
Adaptive Attention-Guided Masking in Vision Transformers for Self-Supervised
Hyperspectral Feature Learning

Abhiroop Chatterjee
Jadavpur University, India

abhiroopchat1998@gmail.com

Susmita Ghosh
Jadavpur University, India
susmitaghoshju@gmail.com

Ashish Ghosh
IIIT Bhubaneswar, India

ashisi@gmail.com

Abstract

This paper presents a self-supervised feature extraction
framework, termed Attention-Guided Masking in Vision
Transformer (AGM-ViT), which exploits attention-guided
dynamic masking and transformer-based spectral-spatial
feature extraction for hyperspectral image classification.
Hyperspectral imagery, characterized by high-dimensional
spectral bands and spatial redundancy, poses challenges
such as the curse of dimensionality, label scarcity, and com-
putational overhead. We introduce a Dynamic Masking
mechanism, which adaptively masks input patches based
on attention scores, compelling the model to reconstruct
masked regions and learn richer contextual representa-
tions from visible tokens. Training is driven by a task-
aware confidence-weighted mean squared error (CW-MSE)
loss that emphasizes patch importance and promotes sta-
ble learning. Notably, AGM-ViT is a lightweight framework
with no decoder; reconstructions occur directly in the em-
bedding space, ensuring high efficiency. AGM-ViT achieves
overall accuracies of 97.45%, 99.87%, and 98.54%, with
Kappa scores of 97.44, 99.83, and 98.23 on the Indian
Pines, Salinas, and Botswana datasets, respectively, using
only 0.08M parameters—outperforming fourteen CNN and
transformer-based SOTA methods in both accuracy and effi-
ciency. Comprehensive ablation studies confirm the efficacy
of each component, and results show that self-supervised
AGM-ViT converges faster and generalizes better than a
fully supervised ViT under data-invariant conditions.

1. Introduction

Hyperspectral image (HSI) classification [16] is essential in
various arenas of geoscience, remote sensing [14], and agri-
cultural applications, but is challenged by high dimension-
ality, thereby leading to computational inefficiency, model
overfitting, and the difficulty in capturing both spatial and
spectral relationships simultaneously. Recent models, such
as convolutional neural networks (CNNs) [3, 8, 13, 21],

often struggle with these issues, requiring extensive pre-
processing and big labeled datasets to achieve accurate re-
sults. More recently, transformer-based [5, 25] models have
shown promise in addressing these challenges by effectively
capturing global dependencies in the data. However, a key
limitation of Vision Transformers (ViTs) [5] in HSI classi-
fication is their inability to model local patterns effectively,
which are crucial for fine-grained spatial and spectral fea-
tures of hyperspectral images. The lack of inductive bias
towards local structure leads to a loss in contextual informa-
tion, limiting the performance of ViTs in scenarios where
such local dependencies are essential. This highlights a crit-
ical gap in recent methodologies, which our research ad-
dresses by introducing a Attention-Guided Masking in Vi-
sion Transformer (AGM-ViT).

Firstly, unlike CNNs with built-in locality and translation
invariant, AGM-ViT learns spatial relationships dynami-
cally through self-attention. Secondly, it extracts HSI rep-
resentations from unlabeled data without relying on hand-
crafted priors like edge detection or local receptive fields.
Thirdly, AGM-ViT’s Attention Guided Masking (AGM)
adaptively masks regions, enabling more flexible contex-
tual learning. AGM-ViT is initially trained in a fully self-
supervised manner for HSI feature extraction and later fine-
tuned with labeled samples for the downstream task. This
helps in better generalization and faster convergence com-
pared to fully supervised Vision Transformers in low data
setups crucical for remote sensing tasks. The motivation
for utilizing attention-guided dynamic masking also lies in
the fact that different spectral bands capture different per-
spective information. This, in turn, helps the model iden-
tify the crucial entanglement across these spectral variations
and enhances its ability to learn robust and discriminative
spectral-spatial features.

Hyperspectral image (HSI) classification has rapidly ad-
vanced with diverse methods tackling spectral-spatial data
challenges. Early models like 2-DCNN [15] combined
simple 2D convolutions with fully connected layers, while
SPRN [26] improved spatial features using attention mech-
anisms and residual blocks. 3-DCNN [7] introduced 3D



convolutions to jointly capture spectral and spatial infor-
mation. Hybrid models like HybridSN [19] merged 2D
and 3D CNNs for richer spectral-spatial representations.
The emergence of transformer-based approaches marked a
pivotal shift, emphasizing efficient feature extraction and
long-range dependency modeling. GAHT [17] and Mor-
phFormer [20] leveraged CNN-transformer hybrids and
self-attention for enhanced spectral-spatial learning. Re-
cent trends focus on lightweight, hybrid architectures that
balance performance and efficiency. CAEVT [27] com-
bined 3D convolutional autoencoders with MobileViT for
efficient feature extraction, while GSC-ViT [28] integrated
groupwise separable convolutions with attention for high
performance with fewer parameters. The shift from CNN-
based models [3, 4] to transformer-driven methods reflects
the demand for advanced spectral-spatial representation.
Architectures like SpectralFormer [11] and SSFTT [23] fur-
ther advanced spectral sequence learning through multi-
scale aggregation, tokenization, and sophisticated semantic
strategies.

Unlike existing SOTA methods, our approach introduces
a Dynamic Masking Layer directly within the ViT back-
bone, enabling adaptive patch selection guided by multi-
head self-attention to effectively model complex spectral-
spatial dependencies in hyperspectral images. This mecha-
nism facilitates the reconstruction of masked regions while
jointly learning semantically rich representations through
auxiliary tasks that enhance classification accuracy. A
confidence-weighted loss further stabilizes training by pri-
oritizing critical regions, leading to improved conver-
gence. While methods like Masked Autoencoder (MAE)
[9, 12] rely on random masking and decoder architecture,
our attention-guided strategy within a lightweight encoder
delivers superior performance with just 89,681 parame-
ters—significantly outperforming larger CNN and trans-
former baselines in both accuracy and efficiency. Figure
1 highlights this fact.

The article is organized as follows. Section 2 details the
methodology used. Section 3 outlines the experimental set-
tings, followed by Section 4, which analyzes the results,
ablation studies, and generalization tests. Finally, Section 5
concludes the article. More details are given in the supple-
mentary materials.

2. Methodology
This section presents the proposed AGM-ViT framework
(Figure 2) for self-supervised hyperspectral image classi-
fication. AGM-ViT is designed to extract robust spectral-
spatial representations using four integrated components:
(1) patch-based spectral-spatial embedding, (2) an initial
transformer encoder to compute attention, (3) attention-
guided dynamic masking (AGM), and (4) a masked re-
construction pass with a confidence-weighted loss func-

Figure 1. Performance comparison on Salinas: The figures high-
light the proposed AGM-ViT’s superior accuracy and parameter
efficiency over existing methods.

tion. This section describes each component in detail. The
attention-guided masking and confidence-weighted loss are
also outlined in Algorithm 1.

2.1. Patch-Based Spectral-Spatial Embedding
Let X ∈ RH×W×C represent a hyperspectral image, where
H and W are spatial dimensions and C the spectral chan-
nels. We divide X into N non-overlapping patches of size
p× p:

N =
H ·W
p2

. (1)

Each patch xi ∈ Rp×p×C is flattened into xi ∈ Rp2C and
projected into a d-dimensional embedding space via a linear
layer:

zi = xiWe + be, ∀i ∈ {1, 2, . . . , N}, (2)

where We ∈ Rp2C×d and be ∈ Rd are learnable parame-
ters.

To preserve positional relationships, a learnable posi-
tional encoding P ∈ RN×d is added:

Z0 = Z+P, where Z = [z1; z2; . . . ; zN ]. (3)

The resulting sequence Z0 ∈ RN×d combines spatial
and spectral features and serves as input to the first trans-
former pass.

2.2. Transformer Encoder: Attention Estimation
The initial transformer encoder models global dependencies
in the full patch sequence to produce attention maps that
inform the masking strategy. The sequence Z0 is passed
through L transformer blocks, each comprising Multi-Head
Self-Attention (MHSA) and a Feedforward Network (FFN).
The attention mechanism is defined as:

Q = Z0Wq, K = Z0Wk, V = Z0Wv, (4)

Attention(Q,K,V) = softmax
(
QK⊤
√
dh

)
V, (5)



Figure 2. Architecture of the proposed Self-Supervised AGM-ViT. The top diagram illustrates the overall architecture of the model, while
the bottom diagram depicts the proposed Attention-Guided Masking (AGM) mechanism.

where Wq,Wk,Wv ∈ Rd×d are learnable projections,
HD is the number of attention heads, and dh = d

HD is
the dimension of each head. Outputs from all heads are
concatenated and linearly projected:

MHSA(Z0) = Concat(head1, . . . , headHD)Wo, (6)

where Wo ∈ Rd×d is the learnable output projection ma-
trix that combines the concatenated outputs of all attention
heads. The attention weights from this stage are stored to
drive the AGM process in the next step.

2.3. Attention-Guided Masking (AGM)
To enhance the model’s ability to focus on semantically
salient regions during self-supervised learning, we propose
Attention-Guided Masking (AGM), which leverages atten-
tion maps from the initial transformer layer to guide token
masking adaptively.

Given the multi-head self-attention scores α(h)
ij for token

pair (i, j) in head h, we first compute the mean attention

across HD heads:

ᾱij =
1

HD

HD∑
h=1

α
(h)
ij . (7)

Token importance Ii is defined as the average aggregated
attention received by token i from all tokens:

Ii =
1

N

N∑
j=1

ᾱji, (8)

where N is the total number of tokens. This quantifies the
contextual relevance of token i within the input sequence.

A sample-specific masking probability γ is then com-
puted by applying a learnable scaling factor α to the average
of the maximum outgoing attention weights per token:

γ = σ

(
α ·

(
1

N

N∑
i=1

max
j

ᾱij

))
, (9)



where σ(·) denotes the sigmoid function, ensuring γ ∈
(0, 1).

Using γ and token importance scores, a soft masking
vector Mb ∈ [0, 1]N is obtained:

Mb = σ (β · (γ − I)) , (10)

with sharpness hyperparameter β = 2, controlling the steep-
ness of the sigmoid, which effectively modulates the prob-
ability of masking each token based on its relative impor-
tance.

Finally, the masked embedding Zm is constructed as
an element-wise interpolation between the original embed-
dings Z0 and a learnable mask token embedding M ∈
R1×d:

Zm = (1−Mb)⊙ Z0 +Mb ⊙M, (11)

where ⊙ denotes element-wise multiplication broadcasted
over embedding dimensions d.
Role in Self-Supervised Learning: AGM enables dy-
namic, attention-driven soft masking that prioritizes retain-
ing semantically critical tokens while softly masking less
informative ones. This adaptive mechanism promotes effi-
cient feature learning by focusing reconstruction objectives
on informative patches, thus improving the quality of se-
mantic representation in a label-free setting.

2.4. Confidence-Weighted Loss
The Vision Transformer processes input patches through
a transformer stack, applying contextual masking after the
first layer based on attention scores. The masking replaces
less informative tokens with a learnable mask token, modu-
lated by soft attention-derived confidence.

To train the model effectively, we use a confidence-
weighted mean squared error (CW-MSE) loss between the
masked representation and the original latent (pre-masked)
output. A confidence mask Cb,i down-weights uncertain
(masked) tokens:

Cb,i =

{
λm + ϵi, if token i is unmasked,
1.0, otherwise,

(12)

where λm ∈ (0, 1] is a base confidence and ϵi ∼ N (0, σ2)
represents noise.

The Confidence-Weighted MSE loss is defined as:

LCW-MSE =
1

BNd

B∑
b=1

N∑
i=1

Cb,i

d∑
j=1

(
Z0,b,i,j − Zl

m,b,i,j

)2
,

(13)
where B is the batch size, N the number of tokens, and d the
embedding dimension; Z0 denotes the original latent (pre-
masked) representation, and Zl

m the masked representation
after transformer encoding.

A regularization term penalizes confidence variance:

Rconf =
1

BN

B∑
b=1

N∑
i=1

(Cb,i − E[C])
2
, (14)

where

E[C] =
1

BN

B∑
b=1

N∑
i=1

Cb,i. (15)

The total loss is:

L = LCW-MSE + βregRconf, where βreg = 0.01. (16)

During pretraining, AGM-ViT learns to reconstruct
masked tokens without using labels. For fine-tuning, a clas-
sifier is trained on top of the frozen backbone using a small
set of labeled data. Unlike the masked autoencoder [9], this
formulation does not use a separate decoder; reconstruction
occurs directly in the shared embedding space after mask-
ing and transformer encoding, enabling soft masking and
confidence-regularized learning.

Algorithm 1 Attention-Guided Masking with Confidence-
Weighted Mean Squared Error Loss

Require: Input X ∈ RH×W×C , patch size p, embedding
dimension d, mask token M ∈ R1×d, base confidence
λm, sharpness β, regularization weight βreg , number of
attention heads HD.

1: Partition X into N = HW
p2 patches, embed and add

positional encoding: Z0 = [zi] +P ∈ RN×d.
2: Compute attention weights α(h)

ij via transformer; aver-

age over heads: ᾱij =
1

HD

∑
h α

(h)
ij .

3: Calculate token importance: Ii = 1
N

∑
j ᾱji.

4: Compute masking probability: γ =
σ
(
α · 1

N

∑
i maxj ᾱij

)
.

5: Generate soft mask: Mb = σ(β · (γ − I)).
6: Form masked embeddings: Zm = (1 − Mb) ⊙ Z0 +

Mb ⊙M.
7: Pass Zm through transformer to get Z(l)

m .
8: Set confidence weights: Cb,i = λm+ ϵi if masked, else

1; ϵi ∼ N (0, σ2).
9: Compute loss:

LCW-MSE =
1

BNd

∑
b,i,j

Cb,i(Z0,b,i,j − Z
(l)
m,b,i,j)

2,

Rconf =
1

BN

∑
b,i

(Cb,i−E[C])2, E[C] =
1

BN

∑
b,i

Cb,i.

10: Total loss: L = LCW-MSE + βregRconf.
11: Pretraining: Optimize the total loss L to reconstruct

masked tokens without labels.
12: Fine-tuning: Freeze backbone; train classifier head on

minimal labeled data for downstream tasks.



3. Experimental Setups

This section details the experimental setup of our approach
to work on three benchmark hyperspectral datasets [1]: In-
dian Pines, Salinas, and Botswana. This is described below.

Datasets. We select three datasets of varying resolutions
for a comprehensive analysis. Indian Pines (145×145, 220
bands, 16 classes) captures a landscape in Indiana, USA.
Salinas (512×217, 224 bands, 16 classes) represents Cali-
fornia’s Salinas Valley. Botswana (145 bands, 14 classes) is
from NASA’s EO-1 satellite over the Okavango Delta. Ad-
ditional details on datasets are provided in Appendix 6.1.

Pre-Processing. HSI data presents challenges from high
spectral dimensionality and spatial variability. To elimi-
nate this, we apply zero-padding to preserve spatial con-
text at the image borders, followed by PCA [2] to reduce
spectral dimensions to 25. Spectral-spatial patches are then
extracted, and background regions with zero labels are re-
moved to improve training relevance and efficiency.

Training the Model. AGM-ViT was trained on Indian
Pines, Salinas, and Botswana datasets using patch size 5.
The Adam optimizer [24] with an initial learning rate of
0.001 was applied for Salinas and Botswana, and 0.005 for
Indian Pines. The CW-MSE loss assigned weights of 1.0 to
masked patches and 1.2 to unmasked patches. For training,
we use a batch size of 64 for Salinas and 32 for both Indian
Pines and Botswana. A learning rate decay of 0.1 every 350
epochs over 800 epochs, and warm restarts (more details in
Appendix 6.2) were applied at the 400th and 750th epochs
for Indian Pines and Botswana. Salinas reached peak accu-
racy in 300 epochs without decay or restarts. For the Indian
Pines, Botswana, and Salinas datasets, 15%, 10%, and 5%
of the data were used for training, respectively. The experi-
ments were carried out on an NVIDIA A100 GPU.

4. Analysis of Results

In this section, we comprehensively analyze results in var-
ious scenarios with three HSI datasets [1]: Indian Pines,
Salinas, and Botswana using the two performance metrics:
Overall Accuracy (OA) and Cohen’s Kappa coefficient (κ).

Comparison with Other SOTA Methods. As stated
earlier, the results are compared with fourteen CNN and/or
transformer-based SOTA methods (results of four SOTA
methods are given in Appendix 6.3). Table 1 shows that, our
model consistently outperforms SOTA supervised CNN and
transformer-based methods across three widely used HSI
datasets. Specifically, our model achieves overall accura-
cies (OA) of 97.45%, 99.87%, and 98.54% on Indian Pines,
Salinas, and Botswana, respectively, with the correspond-
ing Kappa coefficients of 97.44, 99.83, and 98.23. Com-
pared to GSC-ViT [28], the best performing transformer-
based supervised model, our method demonstrates notable
improvements in OA: +0.33% on Indian Pines and +2.72%

on Salinas. Even on the Botswana dataset, where GSC-ViT
slightly outperforms our model by 0.31% in OA, our ap-
proach remains highly competitive, showcasing its robust-
ness across different HSI scenarios. The best-performing
model is denoted in BOLD, followed by second best and
third best in BLUE and RED, respectively.

Parameter Efficiency. Our model excels in self-
supervised HSI learning, capturing complex data represen-
tations with just 0.08M parameters. It outperforms CNN
and transformer-based methods (Table 1), using fewer pa-
rameters than GSC-ViT [28] (0.10M) and significantly less
than SSFTT [23] (0.95M) and GAHT [17] (0.97M).

Ablation Studies. The ablation studies presented in
Tables 2, 3, and 4 comprehensively evaluate the sensitiv-
ity of the proposed model to key architectural and training
hyperparameters on the Indian Pines (IP) and Salinas (S)
datasets, where Indian Pines is challenging, while Salinas
is a larger dataset. Table 2 investigates the effect of vary-
ing embedding dimension (d), number of attention heads
(HD), and number of layers (L). The results demonstrate
that increasing model capacity generally improves perfor-
mance upto a certain threshold. Specifically, configuration
C7 (d = 32, HD = 32, L = 6) achieves the highest OA on
both datasets, with 97.45% on Indian Pines and 99.87% on
Salinas. Beyond this configuration, e.g., in C9, performance
slightly drops, suggesting diminishing returns and potential
overfitting with excessive model complexity.

Table 3 explores the impact of batch size on classifica-
tion accuracy. It is observed that a moderate batch size of
32 and 64 yields the best performance, reaching 97.45% OA
on Indian Pines and 99.87% on Salinas, respectively. While
smaller batch sizes (e.g., 8 and 16) perform competitively,
very large batch sizes (128 and 256) lead to a noticeable de-
cline in accuracy, particularly on Indian Pines. This trend
indicates that excessively large batches may reduce gradi-
ent diversity and hinder effective generalization, whereas
moderate batch sizes strike a balance between stability and
performance.

Table 4 compares fixed manual masking probabilities
with the proposed dynamic masking strategy utilizing learn-
able tokens. The proposed method outperforms all static
masking configurations, achieving 97.45% OA on Indian
Pines and 99.87% on Salinas. Although moderate static
probabilities (e.g., 0.6 or 0.8) offer competitive results,
extreme masking (e.g., 1.0) significantly degrades perfor-
mance and highlights the importance of adaptive feature se-
lection. The learnable dynamic masking mechanism proves
to be more effective in capturing salient features by learn-
ing where to mask based on data-driven objectives. Alto-
gether, the results underline the significance of carefully
tuning model capacity, maintaining an optimal batch size,
and employing a learnable masking mechanism to achieve
state-of-the-art performance.



(a) (b)

Figure 3. Loss landscape analysis on Botswana: The left image shows the 3D loss landscape, the middle image shows the 2D loss contour,
and the right image presents the Hessian eigenvalue distribution. (a) corresponds to 10% training data, while (b) corresponds to 20%
training data. The upper and lower group, respectively, show the visualizations produced by AGM-ViT and supervised ViT.

(a) (b)

Figure 4. Loss landscape analysis on Indian Pines: The left image shows the 3D loss landscape, the middle image shows the 2D loss
contour, and the right image presents the Hessian eigenvalue distribution. (a) corresponds to 10% training data, while (b) corresponds to
20% training data. The upper and lower group, respectively, show the visualizations produced by AGM-ViT and supervised ViT.

Analysis of Loss Landscape and Hessian Eigenvalue
Distribution. The loss landscape analysis (Figures 3 and 4,
respectively, for Botswana and Indian Pines) offers deep in-
sights into optimization stability. In the 3D loss landscape,
supervised ViT (lower rows in figures) exhibits multiple lo-
cal minima of similar depth, indicating susceptibility to sad-
dle points and shallow valleys. In contrast, AGM-ViT (up-
per rows in figures) forms a well-defined convex structure
with a singular deep global optimum (in red arrows), ensur-
ing stable convergence. ViT’s scattered minima at 10% data
settings reflect sensitivity to small perturbations, whereas
AGM-ViT’s structured masking and confidence-weighted
loss enforce strong convexity, preventing suboptimal traps.
In the 2D loss landscape, AGM-ViT’s global minimum is
sharply defined at the center, while ViT’s minima appear ir-
regularly scattered, forming a rugged surface. The diameter
of each minimum is marked, where a larger span signifies
greater confusion and delayed convergence—ViT’s wider
diameter confirms instability, while AGM-ViT’s compact
minimum ensures robustness in both data settings (10% and
20%). We also note that, for our approach, the diameter of
the global optimum does not change even after altering the

amount of training data, making it less susceptible to ex-
treme data-scarce scenarios and making it a scalable and
lightweight option for geoscience-related applications.

AGM-ViT’s Hessian eigenvalues skew toward positive
values show a strong convexity and stable optimization.
While, ViT’s symmetric eigenvalue spread suggests mixed
curvature regions which, in turn, increases susceptibility to
saddle points and instability. A predominance of positive
eigenvalues ensures stable optimization, while a mix, as
seen in ViT, leads to flat regions and unpredictability. This
confirms AGM-ViT’s superior stability and efficiency in
low-data scenarios. The X-axis represents the eigenvalues
of the Hessian matrix indicating curvature directions, while
the Y-axis shows their frequency in the Hessian Eigenvalue
Distribution Plot (Figures 3 and 4).

We also present the qualitative assessments of the clas-
sification maps predicted by AGM-ViT alongside ground
truth for Botswana, Indian Pines, and Salinas (left to right in
Figure 5). The strong visual alignment between predictions
and ground truth (GT) shows the efficacy of our approach.

Generalization Ability. Figures 6 and 7 highlight the
generalization abilities of supervised ViT and our self-



Table 1. Comparison with SOTA methods on various HSI datasets.

Methods Parameters (M) Indian Pines Salinas Botswana

OA (%) κ OA (%) κ OA (%) κ

CNN-based
2DCNN [15] IGARSS ’16 1.71 91.19 89.95 86.21 84.63 89.14 88.23
3DCNN [7] TGRS ’18 0.16 85.95 83.91 90.69 89.64 93.81 93.29
HybridSN [19] GRSL ’19 0.51 93.10 92.12 94.86 94.28 95.90 95.55
SPRN [26] TGRS ’22 0.18 90.84 89.56 93.49 92.76 96.60 96.32

Transformer-based
SpectralFormer [11] TGRS ’21 0.34 78.84 75.80 90.00 88.87 81.31 79.76
SSFTT [23] TGRS ’22 0.95 93.15 92.18 94.72 94.13 96.35 96.05
GAHT [17] TGRS ’22 0.97 94.42 93.64 96.81 96.45 98.52 98.39
CAEVT [27] Sensors ’22 0.36 93.93 93.08 94.79 94.20 97.95 97.78
MorphFormer [20] TGRS ’23 0.19 94.96 94.25 96.21 95.79 97.88 97.70
GSC-ViT [28] TGRS ’24 0.10 97.12 96.67 97.15 96.47 98.85 98.75

OURS (AGM-ViT) 0.08 97.45 97.44 99.87 99.83 98.54 98.23

∆ +0.33 +0.77 +2.72 +3.36 -0.31 -0.52

Figure 5. Comparison of classification maps produced by our AGM-ViT as against the ground truths (GT) on Botswana, Indian Pines, and
Salinas, respectively from left to right.

Table 2. Ablation study on Indian Pines (IP) and Salinas (S): Impact of hyperparameter combinations Ci (embedding dimension d, number
of heads HD, and layers L) on overall accuracy (OA).

Hyper-Parameters C1 C2 C3 C4 C5 C6 C7 C8 C9

d 8 8 8 8 8 16 32 64 64
HD 8 8 8 16 32 32 32 32 64
L 2 4 6 6 6 6 6 6 8

OA (IP) (%) 96.83 96.75 97.33 97.24 97.36 97.38 97.45 97.12 97.20
OA (S) (%) 98.91 99.29 99.32 99.03 99.39 99.52 99.87 99.69 99.18

Table 3. Ablation study with varying batch sizes for Indian Pines
(IP) and Salinas (S).

Batch Size 8 16 32 64 128 256

OA (IP) (%) 97.12 97.19 97.45 97.22 95.45 94.52
OA (S) (%) 97.14 99.28 99.81 99.87 99.33 99.36

supervised AGM-ViT under varying data availability on the
large dataset-Salinas. Please note that to validate the early
convergence and generalization ability of both the models

Table 4. Ablation study on the effectiveness of static manual mask-
ing versus the proposed dynamic masking with learnable tokens on
Indian Pines (IP) and Salinas (S).

Masking Probability 0.2 0.4 0.6 0.8 1.0 OURS

OA (IP) (%) 96.41 96.75 96.83 97.19 92.05 97.45
OA (S) (%) 97.28 99.67 99.71 99.69 97.64 99.87

across different training setups, we perform experiments
for the first 100 epochs. With 50% data, ViT achieves



Figure 6. Accuracy comparison between supervised ViT and self-supervised AGM-ViT across varying training data percentages on Salinas.
Subplots: (Top-Left) 50%, (Top-Center) 30%, (Top-Right) 20%, (Bottom-Left) 10%, (Bottom-Center) 5%, (Bottom-Right) 1%.

a marginally higher peak accuracy (99.92%) than AGM-
ViT (99.44%), reflecting its ability to take advantage of
abundant labeled data. However, as labeled data decreases,
ViT’s performance declines sharply. At 30%, ViT drops to
93.74%, while AGM-ViT remains at 99.07%. This gap ex-
pands further at 20% and 10%, with ViT falling to 69.64%
and 59.29%, showing signs of overfitting and poor gener-
alization, while AGM-ViT maintains 98.97% and 98.22%
accuracy. Under extreme data scarcity (5% and 1%), ViT
fluctuates, reaching 80.29% accuracy at 5% data but falls to
53.85% accuracy at 1% data, highlighting the instability of
supervised learning with limited data. In contrast, AGM-
ViT remains robust, achieving 93.67% accuracy at 5% data
and 95.82% accuracy at 1% data, demonstrating its ability
to extract meaningful features in low data settings. We can
further observe the quick convergence of AGM-ViT within
the first few epochs as compared to the fully supervised ViT.

t-SNE Visualizations. Figure 7 illustrates a clear
distinction in feature representations between supervised
ViT and our self-supervised AGM-ViT, using only 10%
of labeled data across all three datasets. The super-
vised ViT exhibits entangled, snake-like patterns, indica-
tive of overfitting to label-specific details and limited gen-
eralization. In contrast, the AGM-ViT forms compact,
well-separated clusters with smooth transitions, capturing
semantically meaningful and intrinsic structures. This
shows the strength of self-supervised learning in disentan-
gling high-dimensional hyperspectral features and improv-
ing generalization, particularly in low-data regimes critical
to HSI tasks.

5. Conclusion
This paper presents a lightweight, self-supervised vision
transformer framework for HSI classification, exploit-
ing attention-guided dynamic masking and a confidence-

Figure 7. t-SNE visualization for all datasets with 10% training
data: The top row shows supervised ViT results for Indian Pines
(left), Botswana (middle), and Salinas (right). The bottom row
shows AGM-ViT results for the same datasets.

weighted loss. By using early-layer attention to guide token
masking, the model adaptively suppresses low-salience re-
gions, enabling robust spectral-spatial feature learning. The
proposed confidence-weighted reconstruction loss prevents
overfitting by emphasizing masked tokens while maintain-
ing stability across domains. With only 89,681 parame-
ters, our model achieves strong performance and general-
ization across datasets. These results show the potential of
attention-driven self-supervision for scalable and domain-
adaptive HSI classification.

Limitations and Future Scopes. While AGM-ViT de-
livers strong performance, its efficacy depends on the qual-
ity of data. It may struggle with noisy or incomplete data
hampering its efficiency. Future work will explore multi-
modal data integration to further improve generalization.
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6. Appendix
In recent years, world models like Vision Transformers
(ViTs) [5] have demonstrated impressive performance in
various computer vision [6, 8, 13] tasks, including hyper-
spectral image (HSI) classification [12]. However, their ap-
plication to HSI faces several limitations due to the unique
challenges of hyperspectral data.

Challenges. First, the high dimensionality of HSI, with
several spectral bands, complicates processing for conven-
tional ViTs, which are optimized for RGB images with only
three channels. This necessitates extensive modifications to
handle spectral complexity.

Second, data scarcity poses a significant challenge, as
ViTs are data-hungry models that require large labeled
datasets for effective training. However, in HSI, labeled
data is limited due to the high cost and effort of manual
annotation. Third, the computational complexity of ViTs is
a concern, as the self-attention mechanism scales quadrat-
ically with the number of patches, making it resource-
intensive for very high-resolution HSI data and less prac-
tical for real-time or resource-constrained applications like
satellite-based remote sensing.

Fourth, ViTs struggle with spectral-spatial feature inte-
gration. While they excel at modeling long-range spatial
dependencies, they are not inherently designed to process
spectral information, and naive flattening of spectral data
can result in loss of important spectral features. Lastly, ViTs
are sensitive to noisy or redundant spectral bands, common
in HSI, which can degrade model performance. Without
effective preprocessing or dimensionality reduction, ViTs
may overfit to noise or fail to robustly handle irrelevant
spectral information.

Motivation. Our motivation stemmed from the limi-
tations we encountered while applying supervised Vision
Transformer (ViT)-based models to hyperspectral im-
age (HSI) classification. Although ViTs excel in capturing
long-range spatial dependencies, their performance in HSI
was hindered by challenges as mentioned earlier.

While experimenting with supervised Vision Trans-
former (ViT)-based models for hyperspectral image (HSI)
classification, one may encounter several technical chal-
lenges that will lead to suboptimal outcomes. The models
may exhibit fluctuating loss curves and plateaued accuracy
during both the training and validation phases. In certain
cases (Figure 6), the models converge to local minima, lead-
ing to overfitting on small labeled datasets and poor gener-
alization to unseen data. The need for large labeled datasets

is particularly problematic, given that acquiring labeled hy-
perspectral data is expensive. Additionally, ViTs struggled
to effectively integrate spectral-spatial features and are sen-
sitive to noise and redundant spectral bands, leading to sub-
optimal generalization across diverse datasets.

Observation 1: Structural Scaling Law

Increasing the embedding dimension (d) and at-
tention heads (HD) generally boosts accuracy,
but only upto a point. Both Salinas and Indian
Pines datasets achieve peak performance at d =
32, HD = 32, L = 6, with OAs of 99.87% and
97.45%, respectively. Beyond this, further scaling
(d = 64, HD = 64) slightly degrades accuracy,
hinting at an optimal capacity sweet spot where
model complexity and generalization are best bal-
anced.

Proposed Solution. To address these issues, we transi-
tioned from a supervised to a self-supervised learning (SSL)
paradigm. Our key novelty was the development of an
Attention-Guided Masking in Vision Transformer (AGM-
ViT) framework for HSI. The cornerstone of our approach is
a dynamic masking strategy that adaptively selects patches
based on attention scores, forcing the model to reconstruct
less salient regions while learning from the most informa-
tive ones. This mechanism helps the model learn domain-
invariant features from the intrinsic structure of the data it-
self, reducing reliance on labeled samples. We further in-
troduced a confidence-weighted loss function that priori-
tizes robust learning from high-confidence regions, stabi-
lizes training, and prevents overfitting to redundant spectral
bands.

The best aspect of our solution is its ability to achieve
state-of-the-art accuracy with a remarkably small param-
eter count, showing both efficiency and robustness. For
instance, on the Salinas dataset, our model achieved an
impressive 99.87% accuracy with just 89,681 parameters.
More importantly, our model exhibited strong generaliza-
tion capabilities across datasets, maintaining high perfor-
mance despite being trained on limited unlabeled data.

6.1. Additional Details on the Datasets Used
Hyperspectral imaging datasets [1] are essential in remote
sensing, providing detailed spectral information across hun-
dreds of bands. Among the most frequently studied datasets
are Indian Pines, Salinas Scene, and Botswana, each of-



Table 5. Comparison with additional state-of-the-art methods on Indian Pines and Salinas datasets.

Methods
Indian Pines Salinas

OA (%) κ OA (%) κ

SSAN [22] TGRS ’20 95.49 94.85 96.81 96.54
SST-FA [10] RS ’21 88.98 86.70 94.94 94.32
3DSA-MFN [18] RS ’22 96.02 94.78 99.72 99.13
SSSL [12] ICLR ’23 96.55 96.10 99.85 99.75
OURS 97.45 97.44 99.87 99.83
∆ +0.90 +1.34 +0.02 +0.08

fering unique characteristics and applications. The Indian
Pines dataset, collected by the AVIRIS sensor over Indiana,
USA, contains 145×145 pixels and 220 spectral bands,
covering wavelengths from 0.4 µm to 2.5 µm. It mainly
consists of agricultural fields and forested areas, with 16
ground truth classes and approximately 10,249 labeled
samples. Classification on this dataset is challenging due to
class imbalance, high spectral similarity among crop types,
and the presence of mixed pixels.

The Salinas Scene dataset, also captured by AVIRIS,
represents agricultural land in California’s Salinas Valley.
It features higher spatial resolution with 512×217 pixels,
224 spectral bands (excluding 20 bands affected by wa-
ter absorption), and 16 land-cover classes, with a total of
approximately 54,129 labeled samples. Salinas Scene is
the largest among the three in terms of both spatial resolu-
tion and labeled data, making it especially well-suited for
detailed agricultural studies.

The Botswana dataset, acquired using NASA’s Hyper-
ion sensor aboard the EO-1 satellite, covers the Okavango
Delta—an ecologically rich wetland. After removing wa-
ter absorption bands, it includes 145 spectral bands and
is commonly cropped to 145×145 pixels from its original
256×1476 dimensions. It comprises 14 land cover classes
and around 3,248 labeled samples. Although the smallest
in terms of labeled data, Botswana exhibits high spectral
variation due to the diverse natural vegetation and wetland
features, making it particularly valuable for environmental
monitoring.

Common challenges in working with hyperspectral im-
agery include high dimensionality, spectral redundancy,
and difficulty in distinguishing between spectrally similar
classes.

6.2. Additional Information on Warm Restart
Learning Rate Scheduler Strategy

To optimize model convergence, we introduce a warm
restart learning rate scheduler strategy. This scheduler initi-
ates training with a predefined learning rate and systemati-
cally reduces it through exponential decay, during the train-

ing process. To prevent the model from stagnating in local
minima/ plateau, the learning rate is periodically reset to its
initial value, allowing the optimizer to explore new regions
of the loss landscape. This cyclical scheduling approach ef-
fectively balances exploration and exploitation, facilitating
more efficient training dynamics.

6.3. Comparison with Additional SOTA Methods
After a comprehensive literature review, we further incor-
porate four additional state-of-the-art (SOTA) methods to
ensure a rigorous comparison with our proposed approach.

SSAN [22] introduced the Spectral-Spatial Attention
Network (SSAN), which reduces the effect of interfering
pixels at land-cover boundaries using an attention mod-
ule embedded within a simple spectral-spatial network.
SST-FA [10] developed the Spatial-Spectral Transformer
(SST), combining CNNs for spatial features with a modi-
fied Transformer to model spectral sequences, demonstrat-
ing the potential of attention-based models to outperform
traditional CNN approaches in HSI classification. [18]
proposed the 3D Self-Attention Multiscale Feature Fusion
Network (3DSA-MFN), integrating multiscale convolutions
with a 3D self-attention mechanism to capture both local
and long-range dependencies. Further research carried out
by [12] proposed a self-supervised learning framework that
reconstructs the central pixel of a hyperspectral patch using
global contextual information. This method embeds spa-
tial priors into the transformer architecture, addressing the
lack of inductive bias highlighted by [25]. By combining
pixel-wise reconstruction with metric space projections, the
model learns both local and global features. However, its
focus on localized pixel reconstruction may limit its capac-
ity to fully exploit the complex spectral-spatial correlations
inherent to hyperspectral data.

Compared to the reconstruction approach proposed by
[12], which minimizes pixel-wise distances in a fixed met-
ric space, our method employs attention-guided dynamic
masking to adaptively prioritize less salient regions, for bet-
ter spectral-spatial feature learning. Additionally, in AGM-
ViT, the learnable mask tokens enhance its ability to in-



fer complex, missing spectral information during training,
leading to richer and more generalized feature representa-
tions. This dynamic, context-aware learning framework is
seen to be effective at capturing complex hyperspectral cor-
relations. In Table 5 it is seen that our method outperforms
all these four approaches. We achieve a 0.90% increase in
Overall Accuracy and a 1.34 improvement in Kappa score
when compared to [12] on the Indian Pines dataset, with
comparable results on the Salinas dataset.

Observation 2: Initialization-Invariant Loss Land-
scape in AGM-ViT

AGM-ViT exhibits an initialization-invariant loss
topology, ensuring stable optimization regardless of
weight initialization. Its continuous gradient flow
prevents sharp curvatures and this leads to a more
concentrated Hessian spectral density with fewer
dominant eigenvalues. This results in consistent and
efficient convergence. In contrast, supervised ViT
has a rugged loss surface with sharp minima, mak-
ing it sensitive to initialization and prone to subop-
timal convergence at lower data settings.

Inference. Our work demonstrates the efficacy of in-
tegrating attention-guided dynamic masking within a Vi-
sion Transformer framework for hyperspectral image (HSI)
classification. By considering attention-driven saliency to
guide masking, the model effectively focuses on infor-
mative spectral-spatial features while enhancing its self-
supervised learning capabilities. Dynamic masking not only
improves representation learning but also addresses the in-
ductive bias limitations commonly observed in transformer
architectures.

Our method’s consistent outperformance of other SOTAs
across multiple datasets highlights its robustness, scalabil-
ity, and potential as a new state-of-the-art solution for hy-
perspectral image classification.
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