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A pink bicycle leaning against a fence A pair of sneakers
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A carpet covers the living room floor, and a puppy is lying on it 
playing with a kitten. To the right of the carpet, there is a toy ball.

Text-to-3D

Figure 1. SteerX is a zero-shot inference-time steering approach that seamlessly integrates video generative models [12, 16, 21, 23, 29]
and feed-forward scene reconstruction models [12, 22, 31], enabling any 3D and 4D scene generation without explicit camera conditions.

Abstract

Recent progress in 3D/4D scene generation emphasizes
the importance of physical alignment throughout video gen-
eration and scene reconstruction. However, existing meth-
ods improve the alignment separately at each stage, making
it difficult to manage subtle misalignments arising from an-
other stage. Here, we present SteerX, a zero-shot inference-
time steering method that unifies scene reconstruction into
the generation process, tilting data distributions toward bet-
ter geometric alignment. To this end, we introduce two ge-
ometric reward functions for 3D/4D scene generation by
using pose-free feed-forward scene reconstruction models.
Through extensive experiments, we demonstrate the effec-
tiveness of SteerX in improving 3D/4D scene generation.

*Equal contribution, †Corresponding author

1. Introduction
Generating 3D and 4D scenes from images or text prompts
has attracted significant attention due to its potential appli-
cations in AR/VR and robotics [6, 24, 28]. This progress
is largely driven by the advancement of generative mod-
els [4, 13, 16, 23, 29] and neural scene representations [15,
19, 26]. Generative models learn the underlying distribution
of large-scale video data, and neural scene representations
lift these distributions into structured 3D or 4D spaces.

To generate geometrically aligned 3D and 4D scenes,
previous works handle physical alignment separately in ei-
ther video generation [2, 3, 11, 14, 21, 25, 27, 32] or scene
reconstruction [12, 17]. This makes it difficult to address
cross-stage misalignments, as inconsistencies in one stage
may not be fully corrected in the other. We observe that
achieving precise alignment remains an ongoing challenge
due to the indistinct link between the two stages.

https://byeongjun-park.github.io/SteerX/


On the grass, a picnic 
blanket is spread with 
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the blanket and starts 
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Figure 2. An overview of geometric rewards. Our reward functions assess the geometric consistency of intermediate generated video
frames by computing the feature similarity of upscaled DINO features. (a) GS-MEt3R evaluates feature similarity between the original
video frames and their corresponding rendered images from 3DGS. (b) Dyn-MEt3R focuses on background regions by unprojecting
background features from half of the video frames and reprojecting them onto the remaining frames to compute feature similarity.

In this work, we introduce SteerX, a zero-shot inference-
time steering method that seamlessly integrates video gen-
eration and scene reconstruction, generating geometrically
aligned high-quality 3D and 4D scenes. To this end, we pro-
pose two geometric reward functions tailored for 3D and
4D scene generation. They evaluate geometric consistency
across multiple video frames by incorporating advanced
pose-free feed-forward scene reconstruction methods such
as MV-DUSt3R+ [22] and MonST3R [31]. These recon-
struction methods lift intermediate generated video frames
during the reverse sampling process into 3D and 4D spaces.
The reconstructed scenes are then projected back into the
original image space for consistency evaluation.

To guide the generation process toward geometrically
plausible outputs, we formulate a steering algorithm based
on sequential Monte Carlo (SMC) [8]. Built on SMC-based
guided sampling, SteerX offers a generalizable framework
that can pair any generative video model with any 3D re-
construction method, enabling diverse generation tasks, in-
cluding Image-to-3D, Image-to-4D, Text-to-3D, and Text-
to-4D. Through extensive experiments with various video
generative models [12, 16, 21, 29], we demonstrate the ef-
fectiveness and broad applicability of our approach.

2. Methods
Here, we present SteerX, which unifies feed-forward scene
reconstruction models into the video generation process,
iteratively tilting data distributions towards geometrically
aligned samples. In Section 2.1, we define two geometric
reward functions to evaluate geometric consistency in gen-
erated multi-view images and dynamic videos, respectively.
In Section 2.2, we detail our SMC-based steering algorithm.

2.1. Geometric Rewards
Our geometric rewards build upon MEt3R [1], which mea-
sures feature similarity in overlapping regions between im-
age pairs. It evaluates multiple images by averaging feature
similarity across all image pairs, but the cost grows quadrat-
ically. To address this, as shown in Fig. 2, we introduce two
geometric reward functions, GS-MEt3R and Dyn-MEt3R,
which measure global geometric consistency across multi-
ple video frames and mitigate computational bottlenecks.

3D Scene Reward. Recent methods [22, 30] introduce a
mapping function fϕ that directly reconstructs 3DGS and
camera poses from N views {Ii ∈ RH×W×3}Ni=1 as:

fϕ : {Ii}Ni=1 →

{
{µj ,oj ,Σj , cj}N×H×W

j=1

{Pi}Ni=1

, (1)

where the 3D scene is represented as Gaussian parameters,
including position µ, volume density o, covariance Σ, and
color c. Then, we produce images {Îi}Ni=1 by rendering the
scene with estimated camera poses {Pi}Ni=1, ensuring they
correspond to the same viewpoints as the input images. Fi-
nally, GS-MEt3R is measured by computing the cosine sim-
ilarity between upscaled DINO [5, 10] features of input im-
ages {Fi}Ni=1 and rendered images {F̂i}Ni=1 as:

rϕ =
1

N

N∑
i=1

H∑
j=1

W∑
k=1

F jk
i · F̂

jk
i

||F jk
i || · ||F̂

jk
i ||

. (2)

4D Scene Reward. While the 3D scene reward function
is based on 3DGS, feed-forward dynamic scene reconstruc-
tion with Gaussians remains underexplored, making it diffi-



Algorithm 1 SteerX (v-prediction)
Required: v-parametrized diffusion model vθ, reward
function rϕ, number of particles k, and initial noise
{xi

T }ki=1 ∼ N (0, I).
Sampling:

1: for t ∈ {T − 1, . . . , 0} do
2: for i ∈ {1 . . . k} do
3: x̂i

0 ←
√
ᾱt+1x

i
t+1 −

√
1− ᾱt+1vθ(x

i
t+1)

4: xi
t ← dpm-solver(x̂i

0,x
i
t+1)

5: sit ← rϕ(x̂
i
0) ▷ Intermediate rewards

6: Gi
t ← exp(λmaxTj=t(s

i
j)) ▷ Potential

7: end for
8: {xi

t}ki=1 ∼ Multinomial({xi
t, G

i
t}ki=1) ▷ Resample

9: end for
10: l← argmaxi∈{1,...,k} rϕ(x

i
0)

11: return xl
0

cult to directly apply 3DGS-based rewards. Instead, we em-
ploy 3D point cloud representations, where MonST3R [31]
reconstructs it with point maps {Xi}Ni=1, binary dynamic
masks {Mi}Ni=1, and camera poses {Pi}Ni=1 as:

fϕ : {Ii}Ni=1 → {Xi,Mi, Pi}Ni=1, (3)

where we leverage these time-varying point clouds as 4D
scene representations and design a reward function for eval-
uating geometric consistency in dynamic videos.

Since dynamic masks are produced in the camera pose
estimation process to retain only high-confidence points, a
well-reconstructed 4D scene should effectively filter out dy-
namic objects while preserving geometric consistency in the
background regions. Therefore, we evaluate the consistency
only for background regions of video frames, which are not
filtered out by the dynamic mask. To this end, we first split
N video frames into two subsets: Isrc = {I1, I3, . . . , IN}
and Itgt = {I2, I4, . . . , IN−1}. Then, we unproject the
upsampled DINO features of background regions in Isrc
into 3D space using MonST3R. Finally, we reproject them
onto the viewpoint of Itgt, where the rendered features
F̂tgt = {F̂1, F̂3, . . . , F̂N} are used to compute the feature
similarity with background regions in Itgt as:

ri =

H∑
j=1

W∑
k=1

(1−M jk
i )

F jk
i · F̂

jk
i

||F jk
i || · ||F̂

jk
i ||

, (4)

rϕ =
1

(N//2)

N//2∑
i=1

ri. (5)

2.2. Geometric Steering
By using the rewards defined in Section 2.1 and target dis-
tribution p̃θ, SMC operates with the three following steps:

1. (Proposal) For each particle i, sample from the proposal
distribution xi

t ∼ qt(xt|xi
t+1)

2. (Weighting) Compute weights from reward-based po-

tentials ωi
t =

pθ(x
i
t|x

i
t+1)

qt(xi
t|xi

t+1)
Gt(x

i
T :t)

3. (Resampling) Draw new particles from the multinomial
distribution {xi

t}ki=1 ∼ Multinomial({xi
t, G

i
t}ki=1)

Two choices should be made: the potential Gt, and the pro-
posal distribution qt. For the potential, we use max potential

Gt(xT :t)
i := exp

(
λ

T
max
j=t

[rϕ(x̂0)]

)
, (6)

with

G0(xT :0) := exp (λrϕ(x0))

(
T∏

t=1

Gt(xT :t)

)−1

, (7)

such that the particle with the highest reward is preferred.
Notice that we use the Tweedie estimate x̂0 = E[x0|xt] [7,
9, 20] in intermediate steps to avoid full reverse sampling.
For the proposal kernel, to save computation, we leverage
DPM-solver++ [18], which approximates the true sampling
trajectory limited to small neural function evaluation (NFE).
These choices lead to SteerX, as shown in Alg. 1.

3. Experimental Results
In this section, we conduct extensive experiments to verify
the scalability and effectiveness of SteerX across various
video generative models in four scene generation scenarios:
Text-to-4D, Image-to-4D, Text-to-3D, and Image-to-3D.

3.1. Experimental Setup
We evaluate SteerX with k = 4 particles and utilize Hun-
yuanVideo [16], CogVideoX [29], and DimensionX [21]
for Text-to-4D, Image-to-4D, and Image-to-3D, respec-
tively. For Text-to-3D, we utilize the video generation and
scene reconstruction models proposed in SplatFlow [12].
We compare against the best-of-N approach, where the par-
ticles are generated independently, and the one with the
highest reward is selected. We include a baseline (k = 1)
that generates a video and directly reconstructs the scene.

3.2. Main Results
Qualitative results. Figures 3 to 6 illustrate the exam-
ples of various generation tasks for the baseline, best-of-
N (BoN), and our SteerX. While the BoN approach often
fails to maintain 3D consistency and tends to struggle with
generalizing to diverse text prompts, our SteerX effectively
captures object motions, camera movements, and generates
realistic 3D/4D scenes. This highlights the effectiveness and
scalability of SteerX, ensuring that generated video frames
are optimally structured for precise scene reconstruction.



Input Image CogVideoX + Best-of-N + SteerX
Figure 3. Qualitative results in Image-to-4D. SteerX naturally lifts object motion into 4D spaces, while preserving geometric alignments.

HunyuanVideo + BoN + SteerX

“Filmed from a first-person perspective, the camera passes through the graffiti alley in Melbourne, 
Australia, where the graffiti walls are covered with artwork from many artists.”

Figure 4. Qualitative results in Text-to-4D.
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A pair of lovebirds in a golden cage.
Figure 5. Qualitative results in Text-to-3D. SteerX improves the
visual quality and textual alignment, verifying its compatibility.

(a) Input Image (b) DimensionX + BoN (c) DimensionX + SteerX

Figure 6. Qualitative results in Image-to-3D.

Quantitative results. Table 1 shows that our SteerX out-
performs the baseline and BoN approach for all genera-
tion scenarios. Notably, SteerX can be applied to the multi-
view rectified flow model and the 3DGS decoder of Splat-
Flow [12] via GS-MEt3R, showing its applicability across
any video generation and scene reconstruction models.

Method (Text-to-4D) Aesthetic↑ Subject↑ Temporal↑ Dyn-MEt3R↑
HunyuanVideo [16] 0.549 0.967 0.241 0.911

+ Best-of-N 0.551 0.978 0.239 0.931
+ SteerX 0.555 0.980 0.243 0.964

Method (Image-to-4D) Aesthetic↑ Subject↑ Dynamic↑ Dyn-MEt3R↑
CogVideoX [29] 0.592 0.945 0.158 0.880

+ Best-of-N 0.594 0.944 0.143 0.901
+ SteerX 0.596 0.957 0.170 0.909

Method (Text-to-3D) BRISQUE↓ NIQE↓ CLIPScore↑ GS-MEt3R↑
SplatFlow [12] 23.4 4.84 32.7 0.727

+ Best-of-N 17.2 4.41 32.3 0.768
+ SteerX 13.1 4.30 33.4 0.775

Method (Image-to-3D) BRISQUE↓ NIQE↓ CLIP-I↑ GS-MEt3R↑
DimensionX [21] 37.3 4.25 82.4 0.708

+ Best-of-N 29.8 4.33 83.2 0.745
+ SteerX 29.7 4.24 83.7 0.749

Table 1. Quantitative results in various scene generation tasks.

×1.6 acc.
× 2.1 acc.

×1.3 acc. ×1.8 acc.

Figure 7. Scalability analysis with k = 2, 3, 4, 8. We use 100
randomly selected samples in VBench-I2V for Image-to-3D/4D.

Inference-time scalability. Figure 7 presents the execu-
tion time versus reward values for all generation tasks. Al-
though SteerX incurs additional computational overhead by
forwarding the scene reconstruction model multiple times,
it demonstrates better inference-time scalability than BoN.
Also, as the number of particles increases, SteerX achieves
greater performance gains by exploring more diverse sam-
pling trajectories, rather than relying on post-hoc selection.

4. Conclusion
We have presented SteerX, a zero-shot inference-time steer-
ing method for camera-free 3D/4D scene generation. Rather
than handling geometric alignment separately in video gen-
eration or scene reconstruction, SteerX unifies both stages
by tilting the data distribution toward geometrically aligned
samples using a particle system based on SMC. To this end,
we define two geometric reward functions specifically de-
signed for 3D and 4D scenes. SteerX enables efficient and
scalable Image/Text-to-3D/4D scene generation.
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