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Abstract

Agent Behavior prediction is a critical component in au-001
tonomous driving systems, requiring the modeling of in-002
herent uncertainties in an agent’s future motion. This003
survey provides a comprehensive overview of uncer-004
tainty quantification approaches in agent behavior pre-005
diction, categorizing them into three main paradigms:006
probabilistic distribution-based models, generative mod-007
els, and heatmap-based representations. We analyze008
how these paradigms address different aspects of uncer-009
tainty—including intent ambiguity, control variations, and010
inter-agent interactions—and evaluate their performance011
across standard benchmarks. Our comparison reveals the012
trade-offs between model expressiveness, computational ef-013
ficiency, and deployment practicality. We conclude by014
identifying promising research directions that could ad-015
vance uncertainty-aware trajectory prediction, ultimately016
contributing to safer and more reliable autonomous driving017
systems in complex real-world environments.018

1. Introduction019

Behavior prediction is a critical component to make self-020
driving cars work [26, 31]. In autonomous driving, behav-021
ior prediction forecasts the future trajectories and intentions022
of dynamic agents around the self-driving car. It is the pro-023
cess of forecasting how these dynamic agents, such as ve-024
hicles, pedestrians, or cyclists will move and interact based025
on historical observations and contextual cues from the en-026
vironment. It serves as a critical link between perception027
(understanding the environment) and planning (determining028
the next actions of the self-driving car). Accurate behav-029
ior prediction is fundamental to autonomous vehicle safety030
and efficiency. Anticipating future agent actions allows self-031
driving cars to make proactive, risk-aware decisions, reduc-032
ing accident likelihood and improving navigation in unpre-033
dictable urban environments034

Future behavior prediction is inherently uncertain due to035

the stochastic nature of real-world environments and human 036
decision-making. To illustrate this with an example, let us 037
consider the uncertainty in future behavior prediction from 038
the perspective of an agent navigating in the environment of 039
an autonomous vehicle. 040

Intent Uncertainty This source of uncertainty comes 041
from the fundamental ambiguity in the agent’s intent. [5, 042
30, 38] For instance, if an agent is waiting at an intersection 043
and originally planned to continue straight, they may sud- 044
denly decide to make a right turn because their final desti- 045
nation might change or because their intent changes. For 046
example, an agent intending to travel to a grocery store may 047
decide to make an additional stop at a gas station along the 048
route, potentially changing their trajectory mid-journey and 049
altering their final desired goal position. Modeling this un- 050
certainty is inherently stochastic, meaning that even with 051
perfect models and unlimited data, we can never achieve 052
100% prediction accuracy due to the random nature of hu- 053
man decision-making. 054

Control Uncertainty This source of uncertainty can 055
arise even when the agent’s intent is clear [5, 38]. Even 056
if we are entirely certain that an agent is going to proceed 057
straight, there remains growing uncertainty about its exact 058
future pose. This uncertainty increases the further into the 059
future we try to predict. Factors such as road conditions or 060
subtle variations in pedal force applied by human drivers 061
contribute to this growing pose uncertainty over time. 062

Interaction Uncertainty: This source of uncertainty 063
arises from the complex interactions between multiple 064
agents in a shared environment. For example, a vehicle that 065
plans to accelerate may suddenly brake if another vehicle or 066
pedestrian unexpectedly enters its path. Since agents oper- 067
ate within shared environments, their behaviors depend on 068
responses from other agents, creating cascading uncertain- 069
ties that make precise prediction of future behavior increas- 070
ingly difficult as the number of interacting agents grows 071

From a machine-learning modeling perspective, these 072
uncertainties can be categorized as aleatoric or epistemic 073
[7, 10, 21, 22]. 074
• Aleatoric uncertainty arises from the inherent stochas- 075
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ticity of the environment and represents randomness that076
exists regardless of data quantity or model sophistication.077
This type of uncertainty captures the unpredictable nature078
of real-world systems where identical initial conditions079
can lead to different outcomes. In autonomous driving,080
it manifests as the inherent unpredictability in human be-081
havior that cannot be eliminated even with perfect mod-082
eling.083

• Epistemic uncertainty stems from the model’s lack of084
knowledge and can be reduced through improved archi-085
tectures or increased data diversity. This uncertainty re-086
flects limitations in model capacity or distributional shifts087
between training and deployment environments. It be-088
comes particularly pronounced when encountering out-089
of-distribution samples, edge cases, or long-tail phenom-090
ena that were underrepresented in the training data.091

Why is modeling uncertainty in behavior prediction crit-092
ical for autonomous vehicle safety? Modeling future agent093
behaviors with uncertainty is a critical advancement in au-094
tonomous vehicle systems.095

Earlier prediction systems produced only a single ‘best’096
trajectory, often resulting in unrealistic interpolations that097
misled autonomous vehicle planners. For instance, when098
an agent had multiple valid choices (e.g., going straight or099
turning right), models sometimes generated an implausible100
diagonal path [1, 3, 16, 23, 28, 32]. This could lead to101
poor planning decisions, increasing the risk of unexpected102
lane deviations and potential collisions. This could result103
in a trajectory cutting across lanes or medians—one that104
no reasonable driver would actually follow. This limita-105
tion indicates that earlier models lacked the fundamental106
capability to represent behavioral uncertainty. The conse-107
quential impact emerged in how downstream systems in au-108
tonomous vehicles processed these predictions. When pre-109
sented with only a single trajectory devoid of uncertainty110
information, the self-driving car could only perform binary111
collision detection against this ”average” path. The au-112
tonomous vehicle would then use this limited binary col-113
lision assessment to attempt planning a collision-free path,114
despite being based on potentially unrealistic agent predic-115
tions. This methodology introduces significant risk and rep-116
resents a rudimentary approach to collision assessment. To117
compensate for these limitations, practical implementations118
required numerous heuristics to enhance robustness and ac-119
curacy of collision detection algorithms. The introduc-120
tion of uncertainty modeling eliminates the need for these121
heuristic approaches. Probabilistic trajectory representa-122
tions allow systems to shift from binary collision detection123
to a more informative ’probability of collision’ assessment.124
This probabilistic framework provides autonomous vehicles125
with substantially improved capabilities for quantifying col-126
lision risks when interacting with multiple agents.127

The growing importance of uncertainty-aware trajectory128

prediction in autonomous driving has led to significant re- 129
search advances in recent years. Various approaches have 130
emerged to address the fundamental challenge of represent- 131
ing and quantifying uncertainty in agent behavior. To sys- 132
tematically explore these developments, we present a com- 133
prehensive analysis of uncertainty modeling techniques in 134
trajectory prediction. This work is structured around these 135
key components: 136

• Section 2 presents an overview of different paradigms for 137
quantifying uncertainty in trajectory prediction, includ- 138
ing probabilistic distributions, generative approaches, and 139
heatmap-based representations. 140

• Section 3 delivers an in-depth survey of various models 141
in recent literature categorized by these uncertainty quan- 142
tification approaches, analyzing their theoretical founda- 143
tions, implementation techniques, and how they address 144
both aleatoric and epistemic uncertainty in autonomous 145
driving contexts. 146

• Sections 4 and 5 provide a quantitative comparison across 147
benchmark datasets and outline promising future research 148
directions, respectively. 149

Key Contributions: 150

• A structured taxonomy of uncertainty quantification 151
paradigms for trajectory prediction. 152

• A comparative analysis of state-of-the-art models based 153
on accuracy, uncertainty calibration, and deployment fea- 154
sibility. 155

• Insights into open challenges and future research direc- 156
tions, focusing on hybrid modeling strategies and real- 157
world integration. 158

2. Background on Uncertainty Quantification 159

Paradigms 160

This section provides an overview of the major paradigms 161
for quantifying uncertainty in behavior prediction. 162

2.1. Probabilistic Distribution-Based Models 163

Probabilistic models for behavior prediction typically repre- 164
sent an agent’s intent uncertainty by defining a fixed set of 165
possible futures the agent might choose. Each future corre- 166
sponds to a distinct high-level decision (e.g., going straight, 167
turning left), and a probability distribution is assigned over 168
these modes. 169

A common approach is to predefine a set of trajectory 170
anchors that serve as representative modes of future mo- 171
tion. Figure 1 demonstrates an example of this from the 172
MultiPath [5] paper. Given an observed history, the model 173
predicts the probability of each anchor being chosen, along 174
with deviations from the anchor trajectory. This formu- 175
lation provides a structured way to capture multi-modal 176
uncertainty while maintaining a compact representation. 177
[5, 29, 35] 178
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Figure 1. Probabilistic distribution-based models represent uncer-
tainty through multiple trajectory anchors with associated proba-
bilities. Left: Individual anchors with varying probability values
(p). Right: Complete set of K = 16 anchors showing the multi-
modal distribution. Figure adapted from [5].

Beyond intent uncertainty, some probabilistic models179
also explicitly model control uncertainty, which accounts180
for variations in trajectory execution even when the intent is181
fixed. This is typically modeled as a probability distribution182
over trajectory refinements, allowing the model to express183
deviations due to environmental factors, agent dynamics, or184
perception noise. [5]185

Most probabilistic models follow a marginal prediction186
approach, where each agent’s trajectory is predicted inde-187
pendently without explicitly modeling interactions. While188
this simplifies computation and training, it does not inher-189
ently capture interaction uncertainty, where the future mo-190
tion of one agent is conditioned on that of others. Some191
probabilistic models attempt to address this limitation by192
incorporating interaction-aware mechanisms, but handling193
joint uncertainty remains an open challenge [27].194

2.2. Generative Models for Uncertainty Modeling195

Generative models for behavior prediction produce a distri-196
bution over possible future trajectories of an agent through197
sampling-based approaches. Typically, these models sam-198
ple multiple seeds from a normal distribution to generate199
plausible futures that reflect both intent and control uncer-200
tainty. Since these models generate sample trajectories of201
all agents in the environment at once from a given seed,202
they provide interaction-aware predictions. This contrasts203
with most Probabilistic Distribution-Based Models, which204
generally only perform marginal trajectory prediction. Fig-205
ure 2 demonstrates an example of this approach from the206
Trajectron++ [33] paper which models multi-agent interac-207
tions between pedestrians, showing how multiple possible208
trajectories are predicted while accounting for inter-agent209
influences. [4, 14, 15, 20, 33, 34, 36]210

Figure 2. Generative models use structured representations to
model interaction uncertainty, ensuring sampled trajectories re-
main consistent. Figure adapted from [33].

2.3. Heatmap-Based Representations 211

Heatmap-based models quantify uncertainty by predicting 212
spatial probability distributions over future agent positions 213
rather than discrete trajectory sets. Unlike probabilistic 214
models that define explicit probability distributions or gen- 215
erative models that sample from a latent space, heatmap- 216
based approaches produce a continuous probability field 217
over a spatial grid. Each pixel in the heatmap represents a 218
potential future position, with intensity values indicating the 219
likelihood of occupancy at that location. This formulation 220
naturally captures multi-modal uncertainty, as the spread of 221
high-probability regions corresponds to the range of pos- 222
sible future motions. This is then followed by sampling 223
from the heatmap to generate trajectories. Figure 3 demon- 224
strates an example of this approach from the HOME paper 225
which generates trajectory predictions by first creating spa- 226
tial probability heatmaps and then sampling representative 227
paths with associated confidence scores while accounting 228
for interactions with other agents. [11–13, 19, 24] 229

Figure 3. HOME model visualization showing probability
heatmaps, sampled trajectories with confidence scores, and inter-
acting agents at an intersection. Figure adapted from [11].
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3. Taxonomy of Uncertainty Quantification230

Approaches in Behavior Prediction231

This section provides an in-depth survey of various models232
in recent literature categorized by their uncertainty quan-233
tification paradigms. The focus is on analyzing their the-234
oretical foundations, implementation techniques, and how235
they address both aleatoric and epistemic uncertainty in au-236
tonomous driving contexts.237

3.1. Probabilistic Distribution-Based Models238

MultiPath [5] models uncertainty in behavior prediction by239
representing future motion as a discrete distribution over240
predefined anchor trajectories with Gaussian-distributed241
offsets. It explicitly separates intent uncertainty from con-242
trol uncertainty. Intent uncertainty is modeled as a discrete243
probability distribution over trajectory anchors. Control un-244
certainty is captured using normally distributed offsets at245
each timestep, where the mean represents deviation from246
the predefined anchor trajectory and the covariance repre-247
sents control uncertainty.248

MultiPath++ [35] extends MultiPath by refining how249
multimodal uncertainty is captured and aggregated. Instead250
of relying on static trajectory anchors, it learns latent an-251
chor embeddings, improving adaptability to diverse driving252
contexts. Uncertainty is modeled using a Gaussian Mixture253
Model (GMM), where multiple predicted trajectories are as-254
signed probabilities to represent stochastic human behavior.255
To further enhance uncertainty modeling, MultiPath++ em-256
ploys an Expectation-Maximization (EM)-based clustering257
algorithm, which aggregates multiple predictor outputs into258
a structured representation of future motion. This cluster-259
ing mechanism ensures that the final trajectory predictions260
remain diverse while maintaining high-confidence probabil-261
ity estimates, leading to more calibrated and reliable multi-262
modal predictions compared to direct sampling-based ap-263
proaches. This approach reduces one of the critical prob-264
lems of intent mode collapse faced by MultiPath.265

Target-driven trajectory prediction (TNT) [38] models266
uncertainty by explicitly structuring trajectory generation267
into two stages: target selection and motion estimation.268
In the first stage, the model predicts a probability distri-269
bution over discrete target locations, capturing intent un-270
certainty by representing the likelihood of different high-271
level decisions. Given a selected target, the second stage272
estimates continuous trajectories conditioned on that tar-273
get, assuming a unimodal distribution per target. This de-274
composition enables clear separation between uncertainty275
in decision-making and uncertainty in execution, improv-276
ing interpretability. The model further refines uncertainty277
representation by applying a ranking mechanism and non-278
maximum suppression-like filtering to eliminate redun-279
dant trajectory hypotheses while ensuring diverse, high-280

likelihood predictions. 281

Scene Transformer [27] explicitly models control uncer- 282
tainty in multi-agent trajectory prediction by parameteriz- 283
ing each predicted trajectory with a Laplace distribution, al- 284
lowing it to capture variations in motion at each timestep. 285
Unlike models that predict independent agent trajectories, 286
Scene Transformer ensures joint consistency by applying 287
self-attention across agents and time steps, enabling more 288
structured uncertainty propagation. To improve efficiency, 289
it factorizes attention into temporal and agent-specific com- 290
ponents, ensuring that uncertainty estimates remain coher- 291
ent across interacting agents. 292

3.2. Generative Models 293

Social GAN [15] models uncertainty by generating multi- 294
ple plausible future trajectories through adversarial learn- 295
ing. The generator produces trajectory samples, while the 296
discriminator evaluates their realism based on social inter- 297
actions. Social GAN uses a variety loss to encourage di- 298
verse predictions and prevent mode collapse. The diver- 299
sity of sampled trajectories implicitly represents stochastic 300
motion uncertainty, allowing the model to account for the 301
variability in agent behavior while maintaining social com- 302
pliance. 303

Trajectron++ [33] captures uncertainty using a Condi- 304
tional Variational Autoencoder (CVAE), where a discrete 305
latent variable encodes multiple plausible futures. By 306
sampling from this latent distribution, the model captures 307
both high-level intent uncertainty (decision-making vari- 308
ability) and low-level execution uncertainty (trajectory de- 309
viations). Instead of predicting deterministic future paths, 310
Trajectron++ outputs a distribution over possible trajecto- 311
ries, where the spread of sampled trajectories reflects the 312
model’s confidence in its predictions. Additionally, uncer- 313
tainty is propagated through probabilistic control distribu- 314
tions over acceleration and steering, ensuring dynamically 315
feasible outputs. 316

FloMo (Flow-based Motion Prediction) [34] uses a nor- 317
malizing flow-based approach to model uncertainty by 318
treating motion prediction as a density estimation problem, 319
learning a multimodal probability distribution over future 320
trajectories. Instead of generating discrete trajectory sets, 321
FloMo learns a direct transformation from a base noise dis- 322
tribution to the trajectory space, ensuring both diverse and 323
probabilistically meaningful predictions. This approach en- 324
ables efficient sampling of future trajectories while main- 325
taining tractability in likelihood computation, making it par- 326
ticularly effective for uncertainty-aware motion planning. 327
Additionally, FloMo introduces a likelihood-based training 328
method, addressing common issues such as mode collapse 329
in GANs and indirect uncertainty estimation in VAEs. To 330
ensure stability, FloMo incorporates a noise-injection tech- 331
nique, which prevents likelihood spikes and enables robust 332
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generalization to real-world driving scenarios.333

With the success of Denoising Diffusion Probabilistic334
Models (DDPMs) [18] in various domains, this approach335
has been extended into behavior prediction through Motion-336
Diffuser [20]. MotionDiffuser captures uncertainty through337
a diffusion-based generative process, where noisy initial tra-338
jectory samples are iteratively refined into structured pre-339
dictions. Unlike GANs or VAEs, which generate trajecto-340
ries in a single step, MotionDiffuser starts from a Gaussian341
noise distribution and progressively denoises it over mul-342
tiple iterations, ensuring controlled and diverse trajectory343
generation. By conditioning this denoising process on past344
motion and scene context, MotionDiffuser produces mul-345
timodal trajectory distributions that reflect inherent uncer-346
tainty while maintaining physical plausibility. This iterative347
refinement enables fine-grained uncertainty representation.348

3.3. Heatmap-Based Representations349

Heatmap output for future motion estimation (HOME) [11]350
represents uncertainty in trajectory forecasting using a 2D351
probability heatmap, where each pixel encodes the likeli-352
hood of an agent occupying that position in the future. Un-353
like methods constrained to predefined trajectory clusters,354
HOME captures the full distribution of possible outcomes,355
supporting flexible multimodal predictions. To refine un-356
certainty representation, HOME integrates attention mecha-357
nisms that model inter-agent interactions, ensuring that pre-358
dicted probability distributions reflect realistic behavioral359
variations. Additionally, it introduces two sampling strate-360
gies for trajectory extraction: one that prioritizes coverage361
to minimize the probability of missing the true future posi-362
tion and another that optimizes for final displacement accu-363
racy. This enables a trade-off between trajectory diversity364
and precision without requiring retraining, making HOME365
well-suited for adaptive motion forecasting in autonomous366
driving applications.367

Graph-oriented heatmap output for future motion esti-368
mation (GOHOME) [13] improves upon standard heatmap-369
based representations by incorporating lane connectivity in-370
formation, ensuring that trajectory predictions align with371
real-world road constraints. Instead of computing a prob-372
ability distribution over a free-space grid, GOHOME gen-373
erates lane-level probability rasters and projects them onto374
a global heatmap, preserving road structure and traffic flow375
patterns. By ranking the most probable lanelets and com-376
puting heatmaps only for those regions, GOHOME main-377
tains multimodal uncertainty representation while reducing378
computational overhead. Additionally, the model employs379
uncertainty-aware ensembling, combining multiple proba-380
bility maps to enhance prediction accuracy while prevent-381
ing mode collapse, a common issue in trajectory-based fore-382
casting. This structured approach allows GOHOME to cap-383
ture both aleatoric and epistemic uncertainty while main-384

taining computational efficiency, making it particularly ef- 385
fective for structured, long-horizon trajectory prediction. 386

Trajectory heatmap output with learned multi-agent 387
sampling (THOMAS) [12] refines heatmap-based uncer- 388
tainty modeling by using a hierarchical decoding process 389
that iteratively refines predictions at multiple resolutions. 390
Instead of generating a single high-resolution probability 391
map, THOMAS begins with a coarse-grained heatmap to 392
approximate the overall uncertainty distribution and then 393
progressively refines it by focusing on high-probability 394
regions. This hierarchical strategy improves both com- 395
putational efficiency and prediction accuracy, concentrat- 396
ing resources where they are most needed. Additionally, 397
THOMAS employs a deterministic sampling mechanism to 398
extract diverse, multimodal trajectory endpoints from the 399
heatmap, ensuring that different future intentions and mo- 400
tion variations are captured. To maintain scene consistency 401
across interacting agents, THOMAS introduces a modality 402
recombination module, which aligns agent trajectories to 403
prevent collisions and ensure that predictions remain jointly 404
coherent. This structured uncertainty modeling approach 405
makes THOMAS highly effective for multi-agent trajec- 406
tory prediction, where maintaining scene-level consistency 407
is crucial for realistic and safe autonomous behavior. 408

4. Model Comparison and Analysis 409

This section presents a qualitative and quantitative com- 410
parison of uncertainty-aware trajectory prediction models 411
across standard benchmark datasets, evaluating their perfor- 412
mance using standardized metrics that assess both accuracy 413
and uncertainty calibration. 414

4.1. Qualitative Analysis 415

We propose a comprehensive framework for evaluating tra- 416
jectory prediction paradigms across five critical dimensions 417
that capture both the quality of uncertainty representation 418
and practical system considerations: 419

• Intent Uncertainty: How well the approach captures the 420
fundamental ambiguity in agent goals and intentions 421

• Control Uncertainty: The model’s capacity to represent 422
variability in trajectory execution given a fixed intent 423

• Interaction Uncertainty: How effectively the approach 424
captures the interdependence between multiple agents’ 425
trajectories 426

• Computational Efficiency: The relative computational 427
resources required for inference 428

• Deployment Practicality: Suitability for real-world im- 429
plementation in autonomous systems 430

Table 1 presents our analysis of how the three major 431
paradigms—probabilistic models, generative approaches, 432
and heatmap-based methods—perform across these di- 433
mensions. Probabilistic models provide structured uncer- 434
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tainty estimation but may struggle with modeling com-435
plex interactions. Generative approaches offer flexible and436
interaction-aware predictions but suffer from stochasticity437
and mode coverage issues, including intent mode collapse438
(where the model fails to capture distinct, meaningful in-439
tent modes). Heatmap-based methods provide highly multi-440
modal spatial uncertainty representation but introduce com-441
putational complexity and require additional trajectory ex-442
traction steps. The choice of approach depends on system443
requirements, and future work may focus on hybrid strate-444
gies that combine the strengths of multiple paradigms.445

4.2. Quantitative Analysis446

The trajectory prediction field utilizes several benchmark447
datasets for evaluation, with Argoverse [6] being one of the448
most widely used due to its rich map data and diverse urban449
scenarios. Other notable datasets include Waymo Open Mo-450
tion Dataset [8], nuScenes [2], and INTERACTION [37],451
each offering unique characteristics for specialized testing452
scenarios. For our analysis, we focus on Argoverse, which453
serves as a tracking benchmark with over 30K scenarios454
from Pittsburgh and Miami, sampled at 10 Hz, where each455
sequence contains an agent whose future locations must be456
predicted over a 3-second horizon.457

To systematically evaluate model performance on this458
benchmark, we consider both accuracy and uncertainty459
quality metrics. Accuracy metrics measure how closely pre-460
dicted trajectories align with actual movements:461

• Minimum Final Displacement Error (minFDE) quan-462
tifies the final position error by selecting the closest pre-463
diction among multiple outputs.464

• Minimum Average Displacement Error (minADE)465
computes the average deviation throughout the trajectory,466
capturing overall path alignment.467

• Miss Rate (MR) highlights critical prediction failures by468
counting instances where the predicted trajectory deviates469
beyond a predefined threshold, typically 2 meters for ve-470
hicles.471

Uncertainty quality metrics assess how well models ex-472
press confidence in their predictions:473

• Brier-minFDE integrates accuracy and calibration, re-474
warding models whose confidence matches actual perfor-475
mance.476

• Diversity-Aware Coverage (DAC) evaluates how com-477
prehensively predictions capture the range of plausible478
future motions, encouraging models to account for multi-479
ple possible outcomes rather than only the most probable480
one.481

Table 2 presents the performance of various uncertainty-482
aware trajectory prediction models on the Argoverse Bench-483
mark test dataset. HOME+GOHOME achieves the low-484
est miss rate (0.08), demonstrating superior performance in485
capturing the most likely trajectories. MultiPath++ shows486

the best overall accuracy with the lowest minFDE (1.21) 487
and minADE (0.79), suggesting strong general prediction 488
capability. Most models achieve near-perfect diversity cov- 489
erage (DAC = 0.99) except for Social CVAE, which shows 490
significantly worse performance across all metrics. This 491
may indicate fundamental limitations in the pure CVAE ap- 492
proach when applied to complex driving scenarios. 493

It’s worth noting that performance differences may also 494
relate to model complexity and computational resources, 495
not just algorithmic superiority. Models with larger param- 496
eter counts or more sophisticated architectures may achieve 497
better results due to increased model capacity rather than 498
fundamental advancements in uncertainty modeling. Our 499
analysis focuses primarily on the uncertainty representation 500
capabilities rather than architectural details. 501

5. Conclusion and Future Directions 502

This survey has provided a comprehensive overview of un- 503
certainty modeling approaches in trajectory prediction for 504
autonomous driving. We have categorized these approaches 505
into three main paradigms—probabilistic distribution-based 506
models, generative models, and heatmap-based representa- 507
tions—and analyzed their theoretical foundations and im- 508
plementation techniques. Each paradigm has strengths, but 509
deployment challenges persist, particularly in ensuring real- 510
time inference under hardware constraints, handling edge 511
cases, and maintaining robustness in dynamic traffic envi- 512
ronments. Addressing these issues is crucial for translat- 513
ing uncertainty-aware trajectory prediction from research to 514
production-level autonomous systems. Probabilistic models 515
provide structured representations but often struggle with 516
complex interactions; generative approaches excel at cap- 517
turing rich interaction dynamics but face deployment chal- 518
lenges; and heatmap-based methods offer intuitive spatial 519
uncertainty representations but require additional process- 520
ing steps. [9, 17, 25] 521

Future research should develop hybrid approaches that 522
integrate the interpretability of probabilistic models, the 523
flexibility of generative methods, and the multimodal rich- 524
ness of heatmap-based approaches. Additionally, new 525
benchmarks should evaluate models not only on accuracy 526
and uncertainty calibration but also on real-time efficiency 527
and adaptability to domain shifts. Addressing these aspects 528
is essential for translating uncertainty-aware trajectory pre- 529
diction into real-world autonomous systems. Additionally, 530
the field would benefit from standardized evaluation proto- 531
cols specifically designed to assess uncertainty quality be- 532
yond traditional accuracy metrics. Addressing these chal- 533
lenges will require interdisciplinary efforts spanning ma- 534
chine learning, robotics, and human behavior modeling, 535
ultimately enabling autonomous vehicles to safely navi- 536
gate the complexity and unpredictability of real-world en- 537
vironments. As uncertainty modeling techniques continue 538
to evolve, their integration into end-to-end autonomous 539
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Paradigm Intent Uncertainty Control Uncertainty Interaction Uncertainty Computational Effi-
ciency

Deployment Practi-
cality

Probabilistic
Models

High
Explicitly modeled using
discrete trajectory modes

Moderate
Gaussian offsets cap-
ture variability, lacks
fine-grained execution
modeling

Low
Typically models agents in-
dependently, leading to in-
teraction inconsistency

High
Efficient due to dis-
crete mode selection,
low inference cost

High
Widely used in real-
world AV systems

Generative Mod-
els

Moderate
Latent variables encode di-
verse intents, mode cover-
age can be inconsistent

High
Well-suited for stochastic
motion modeling

High
Jointly models agent inter-
actions, producing socially
consistent trajectories

Low
Computationally
expensive due to
iterative sampling

Low
Challenges for real-
time deployment due
to latency

Heatmap-Based
Models

High
Predicts spatial probability
distributions, naturally cap-
tures intent uncertainty

Moderate
Some methods refine un-
certainty via probability
smoothing

High
Well-suited for multi-agent
interactions through shared
spatial grids

Moderate
Memory-intensive, re-
quires trajectory post-
processing

Moderate
Used in research, but
deployment remains
challenging

Table 1. Comparison of uncertainty quantification paradigms in behavior prediction.

Model minFDE minADE MR Brier-minFDE DAC

MultiPath++ 1.21 0.79 0.13 1.79 0.99
TNT 1.45 0.91 0.17 2.14 0.99
Scene Transformer 1.23 0.80 0.13 1.89 0.99
HOME + GOHOME 1.29 0.89 0.08 1.86 0.98
THOMAS 1.44 0.94 0.10 1.97 0.98
Social CVAE 3.23 2.49 0.39 4.27 0.67

Table 2. Performance comparison of uncertainty-aware trajectory
prediction models on Argoverse [6].

driving systems will play a crucial role in advancing the540
safety, reliability, and performance of self-driving technolo-541
gies.542
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