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Abstract

Video generation models have rapidly progressed, position-001
ing themselves as video world models capable of supporting002
decision-making applications like robotics and autonomous003
driving. However, current benchmarks fail to rigorously004
evaluate these claims, focusing only on general video quality,005
ignoring important factors to world models such as physics006
adherence. To bridge this gap, we propose WorldModel-007
Bench, a benchmark designed to evaluate the world modeling008
capabilities of video generation models in application-driven009
domains. WorldModelBench offers two key advantages: (1)010
Against to nuanced world modeling violations: By incorpo-011
rating instruction-following and physics-adherence dimen-012
sions, WorldModelBench detects subtle violations, such as013
irregular changes in object size that breach the mass con-014
servation law—issues overlooked by prior benchmarks. (2)015
Aligned with large-scale human preferences: We crowd-016
source 67K human labels to accurately measure 14 frontier017
models. Using our high-quality human labels, we further018
fine-tune an accurate judger to automate the evaluation019
procedure, achieving 9.9% lower error in predicting world020
modeling violations than GPT-4o with 2B parameters. In021
addition, we demonstrate that training to align human anno-022
tations by maximizing the rewards from the judger noticeably023
improve the world modeling capability.024

1. Introduction025

Video generation models have achieved remarkable success026
in creating high-fidelity and realistic videos [8, 13, 18, 22,027
27, 40, 42, 49, 54, 59]. Beyond generating visually com-028
pelling content, these models are increasingly seen as po-029
tential video world models. Video world models simulate030
feasible future frames based on given text and image in-031
struction [1, 29, 40]. These future frames obey real-world032
dynamics and unlock grounded planning on decision-making033
tasks such as robotics, autonomous driving, and human body034
prediction [1, 6, 7, 9, 10, 19, 60].035

Despite their potential, the ability of video generation036
models to act as reliable world models remains speculative.037

Figure 1. Model A and B generate high quality videos, but the
robotic arm in A’s video is on the air, violating gravity. Established
benchmarks focus on general video quality assessment, and does
not distinguish videos that violate physical laws.

Existing benchmarks primarily evaluate on general video 038
quality such as temporal consistency and aesthetic coher- 039
ence [24, 34, 51]. While these measures are necessary for 040
video world models, they are inadequate. Importantly, they 041
do not adequately capture real-world dynamics, e.g. adhere 042
to basic real-world physics (Figure 1). While efforts like 043
VideoPhy [4] introduce physics-based evaluations, their fo- 044
cus on interactions between daily objects overlooks broader 045
application-driven scenarios. 046

To address the gap, we introduce WorldModelBench to 047
judge the world modeling capability of video generation 048
models. WorldModelBench consists of 350 image and text 049
condition pairs, ranging over 7 application driven domains, 050
56 diverse subdomains, and provides support for both text-to- 051
video (T2V) and image-to-video (I2V) models. In addition to 052
being a comprehensive benchmark, WorldModelBench fea- 053
tures two unique advantages. 054

Firstly, WorldModelBench detects nuanced world mod- 055
eling violations that are overlooked by previous bench- 056
marks. WorldModelBench maintains a minimal evaluation 057
on general video quality (frame-wise and temporal quality), 058
and focuses to introduce two dimensions specifically for 059
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Water is dispensed into 
plastic bottles on rotary 
filling machines.

Gaming

The player carefully turns 
the corner, aiming their gun 
at an approaching enemy.

Human Activities

The person touches 
their own hand with 
the other hand.

Animation

The elf girl speaks to 
someone off-screen, with  
a concerned expression.

Natural

The grasshopper jumps  
from the ground into the  
air amidst the vegetation.

Video  
Generator
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The hand touches the 
top of the other hand.

Condition frame

Instruction Following Score 

Common Sense Score 

Physics Adherence Score 

Domains and examples in WorldModelBench

Judger

Example workflow

Figure 2. Overview of WorldModelBench. WorldModelBench judges the world modeling capability of video generation models across
diverse application-driven domains. On WorldModelBench, a model generates a video based on text and optionally image conditions and is
scored along commonsense, instruction following, and physics adherence dimensions. We collect 67K human labels to evaluate 14
frontier models. WorldModelBench is paired with a fine-tuned judger, providing fine-grained feedback for future models, and training to
aligns its reward improves world modeling capabilities.

world modeling: instruction following and physics adher-060
ence. It further provides fine-grained categories for these061
two dimensions to capture nuances: instruction following062
dimension is broken down into four levels and physics ad-063
herence are listed into five common violations (§ 3.1). By064
using this setup, it effectively capture cases such as object065
changing sizes as Newton’s law violation.066

Secondly, WorldModelBench is paired with large-scale067
human labels. We conduct a large scale human annotation068
procedure and collect 67K human labels to accurately reflect069
the performance of existing models with the proposed met-070
rics (§ 3.3). Using these human annotations, we offer several071
key insights of current video generation models, e.g. insuf-072
ficient tuning on I2V models, in §4. We further fine-tune a073
2B parameter judger on the collected human labels to facil-074
itate future model evaluations. We find that the fine-tuned075
judger, despite lightweight, learns to predict human prefer-076
ence with 9.9% lower error rate than GPT-4o [2], thanks077
to our high-quality human labels. More importantly, we078
find that aligning the human annotations by maximizing the079
scores from the fine-tuned judger improves the world mod-080
eling capability of video generation models [42, 62]. Our081
contributions are:082

1. We demonstrate that previous benchmarks are insuffi- 083
cient for video world models, and contribute WorldMod- 084
elBench to measure world modeling capability of video 085
generation models on diverse application driven domains. 086

2. A large scale of 67K human labels for 14 frontier models, 087
for the community to conduct further research. 088

3. An accurate fine-tuned judger. This judger accurately 089
predicts world modeling violations, and fine-tuning on its 090
rewards leads to better generation. 091

2. Related Works 092

Video generation models Many diffusion-based video gen- 093
eration models have made major improvement in synthesiz- 094
ing realistic videos [3, 12–15, 18, 21, 22, 27, 28, 35, 36, 36, 095
37, 40, 45, 47, 49, 53, 54, 56, 57, 59, 62]. Many of these 096
models synthesized videos based on input text condition, 097
e.g. [12, 13, 21, 27, 35, 37, 40, 47, 49, 56, 62] image condi- 098
tion [5], or both [28, 53, 54, 62]. In this paper, we focus on 099
evaluation of video models with text and image conditions. 100
Evaluation of video generation models. Previous video 101
generation evaluation mainly uses single-number metric such 102
as Frechet Video Distance (FVD) [46] and CLIPSIM [43]. 103
Huang et al. [24] establishes VBench that provides a compre- 104

2



CVPR
#

CVPR
#

CVPR 2025 Submission #. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

hensive evaluation on video generation models, focusing on105
general video quality and video-condition consistency. Wu106
et al. [51] proposes T2VScore with text-video and general107
video quality criteria. Bansal et al. [4] further proposes to108
evaluate videos on whether it follows the correct physics109
rules in a 0 or 1 granularity. They also keep an instruction110
following category in a 0 or 1 granularity. Our WorldModel-111
Bench further improves along the direction with more fine-112
grained physics scoring and instruction following scoring,113
incorporating diverse application domains, and also incor-114
porate previous metrics from VBench. He et al. [20] also115
uses human annotators, but does not focus on physics and116
instruction following capability. [25] studies the physics117
adherence of video generation models on 2D simulation.118

Reward models for video generation models Li et al.119
[31], Prabhudesai et al. [42] explores using reward models120
to improve the quality of video generation models. Unlike a121
rich set of image reward models [26, 52, 55], there is fewer122
video reward models [31]. VideoPhy collects human labeled123
data with 0-1 corase labels on whether the model follows124
instruction or physics. However, they do not further improve125
the video generation based on the trained reward model. In126
this paper, we collected a large scale of human preference127
in video, specifically in the context of world modeling, and128
train an accurate reward model to reflect human preference.129

Learning from reward models has been shown effective130
to align the model output with human preference in the text131
domain [30, 41]. In the video generation domain, [58] uses132
a text-image reward model (RM) to improve the generation133
quality from human feedback. [31] further extends the idea134
to use a mixture of text-image and text-video RM to improve135
model. [42] proposes the reward gradient framework that136
incorporates multiple reward models. We follow the reward137
gradients framework with our fine-tuned judger as the reward138
model to improve the video generation capability.139

3. WorldModelBench140

In this section, we formally introduce WorldModelBench.141

Design principle An ideal video world model should syn-142
thesize feasible next few frames of the world in response to143
text (and image) instruction, to facilitate decision-making144
downstream applications. Thus, the assessment of these145
models should include: the judgment on the ability to pre-146
cisely follow instruction in input condition, the judgment147
on the ability to accurately synthesize next few frames, and148
include diverse application domains.149

Specifically, we breakdown our grading criteria into two150
parts: (1) Instruction following: whether the generated151
videos correctly follow the text (and image) prompt, and (2)152
Future frame generation: whether the generated videos153
represents feasible next state of the world, including physics154
adherence and commonsense. We introduce fine-grained155
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Figure 3. WorldModelBench consists of 7 domains and 56 subdo-
mains, totaling 350 image and text conditions.

categories under these two parts in §3.1. The detailed cura- 156
tion procedure is described in §3.2. Finally, we present the 157
procedure for obtaining human annotations in §3.3. 158

(a) Newton’s First Law violation: motion without external force.

(b) Solid mechanics violation: irregular deformation.

(c) Fluid mechanics violation: unnatural liquid flow.

(d) Impenetrability violation: objects intersect unnaturally.

(e) Gravity violation: inconsistent behavior under gravity.

Figure 4. Examples of violations across physics categories.

3.1. Grading Criteria 159

For each instances in WorldModelBench, a model gener- 160
ates a video based on the text (and image) condition. Each 161
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video is then graded in a fine-grained manner along the162
following dimensions, totaling a score up to 10. Table 1163
compares WorldModelBenchwith existing benchmarks.164

3.1.1. Instruction Following165

We define four levels of instruction-following performance166
and assign scores according to the level (scores 0–3).167
Level 0 The subject is either absent or remains stationary.168
Level 1 The subject moves but fails to follow the intended169
action. For example, if the prompt instructs a car to turn left,170
but the generated video shows the car turning right.171
Level 2 The subject partially follows the instruction but fails172
to complete the task. For instance, if the prompt asks a173
human to touch their shoulder, but the generated video only174
shows the human moving their hand toward the shoulder175
without completing the action.176
Level 3 The subject fully and accurately completes the in-177
structed task.178

3.1.2. Physics Adherence179

Physics laws are the foundational principles of the physi-180
cal world, and their adherence serves as a critical proxy for181
assessing the plausibility of generated frames. WorldMod-182
elBench evaluates video generation models using five fun-183
damental physical laws, selected based on common failures184
of contemporary models and findings from related work [4].185
Each law is assigned a binary score of 0 or 1, totaling scores186
from 0 to 5. Examples of violations are illustrated in Fig-187
ure 4.188
Law 1: Newton’s First Law: Objects does not move with-189
out external forces.190
Law 2: Conservation of Mass and Solid Mechanics: ob-191
jects do not irregularly deform or distort.192
Law 3: Fluid Mechanics: Liquid does not flow unnaturally193
or irregularly.194
Law 4: Impenetrability: Objects does not unnaturally pass195
through each other.196
Law 5: Gravitation: Objects does not violate gravity, such197
as floating.198

3.1.3. Commonsense199

While measures of general video generation quality is not200
the main focus of WorldModelBench, they are a prerequi-201
site to a good video world model, i.e., commonsense. For202
instance, a feasible representation of future states needs to203
have coherent motion and visually reasonable quality. In204
particular, we follow the categorization of [24], and summa-205
rize the commonsense into temporal-level and frame-wise206
quality. We give a score of 0 or 1 for each quality (total207
scores 0–2).208
Frame-wise quality: Whether there is visually unappealing209
frames or low-quality content.210
Temporal quality: whether there is noticeable flickering,211
choppy motion, or abrupt appearance (disappearance) of212

irrelevant objects. 213

Table 1. Comparison of WorldModelBench to other existing video
benchmarks: VBench, VideoArena, and VideoPhy.

VBench VideoArena VideoPhy Ours

Metrics
Instruction
Following ✓ × ✓ ✓
Common
Sense ✓ × × ✓
Physics
Adherence × × ✓ ✓

Support Types
T2V ✓ ✓ ✓ ✓
I2V ✓ ✓ × ✓
Basic Statistics
Prompt
Suite Size 946 1500 688 350
Human Label - 30k 73k 67k
Label Release? - No No Yes

3.2. Curating Procedure for Diverse Domains 214

WorldModelBench covers a diverse domains of autonomous 215
driving, robotics, human activities, industrial, natural scenes, 216
simulation gaming, and animation. Each domain consists of 217
50 samples from 5-10 subdomains. Each sample is a text and 218
image condition pair. Figure 3 visualizes the subdomains. 219
To ensure the quality, we perform the following three steps 220
to obtain each sample. 221

1. Obtaining a reference video. To ensure that texts and 222
images condition pairs are feasible, we select a initial 223
sets of videos from existing datasets as reference: driv- 224
ing from [11], robotics from [39] and human activities 225
from [10]. These datasets originally have categories, so 226
we select common ones as our subdomains. We select 227
the reference video of the remaining domains from [38]. 228
Specifically, we use GPT-4o [2] to caption videos and 229
filter keywords of the domains. We also select the most 230
popular subdomains within these domains. 231

2. Obtaining the text and image condition. For each refer- 232
ence video, we select the first frame as an image condition. 233
We use GPT-4o [2] to caption the difference between the 234
first frame and the subsequent frames as the action. We 235
also recaption the image condition to support T2V model. 236
We perform detailed prompt engineering so that the T2V 237
model can have a coherent view of the video (e.g. the ob- 238
jects described in the action will appear in the description 239
of the first frame description). 240

3. Human-in-the-loop verification The previous two steps 241
can introduce errors. For instance, some videos can have 242
black initial frames, the captioning from GPT-4o is not 243
always precise, and some videos do not have potential 244
violations of the grading criteria. Thus, we manually 245
verify all the 350 images and text conditions are of good 246
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quality.247

3.3. Obtaining a Reliable World Modeling Judger248

While large (visual) language models have achieved decent249
agreement with human judgers in domains such as chat250
assistants [17, 61], it is unclear whether this ability holds251
true on the world modeling domain, in particular, when it252
involves subjects such as understanding physics laws. To253
draw reliable conclusions on contemporary video generation254
models, we perform a large scale of human annotations. For255
each vote, we require the human voter to complete a dense256
annotation with selection of all criteria described in 3.1. In257
the other words, one complete annotation contains a rich set258
of 8 human labels on world modeling. Thanks to the scale of259
our annotations, one generated video can receive more than260
one vote, which allows us to compute human agreement to261
validate our vote quality.262

Vote statistics We show the statistics of human votings in263
Table 2. For basic statistics, we collect 8336 complete votes264
from student volunteers, translating into 67K labels. We also265
check the quality of our votes by computing agreement statis-266
tics between voters: 87.1% of votes are within an absolute267
score difference of 2. To inspect the quality of our votes by268
comparing to related works that are mainly arena-style, we269
convert our votes into pairwise comparisons. In particular, if270
a video receives multiple votes, we determine its win or loss271
against other models on the same prompt by comparing total272
scores, and report the probability of the same result (win or273
loss) as the pairwise agreement. We found a 70% pairwise274
agreement, which is comparable to the 70 ∼ 75% in Bansal275
et al. [4] and 72.8% ∼ 83.1% in Chiang et al. [17]. Further-276
more, we select votes from 10 experts that are at least CS277
PhD level as experts. We compute an interval of 1 standard278
deviation away from the mean of expert votes. We find that279
96.2% and 95.4% of experts and crowd votes fall into this280
interval, validating the quality from crowd votes.281

Table 2. Vote statistics of WorldModelBench.

Basic Statistics Agreement Statistics

# complete votes 8336 Pairwise agreement 70.0%
# voters 65 Score agreement (±2) 87.1%
# votes per video 1.70 Experts agreement (±σ) 96.2%
# labels 67K Crowd agreement (±σ) 95.4%

Fine-tuning for automatic evaluation To obtain an auto-282
matic judger for future released model, we fine-tune a visual283
language model(VLM) on the collected annotations [48].284
We process a single vote as 8 question answering pair, where285
the VLM takes in the text (and image) condition and the286
generated videos, and output the score for individual grad-287
ing criteria in § 3.1. For each prompt, we randomly select288
12 generated videos as the training set, and the remaining289

generated videos as the test set. The results are shown in §4. 290
As a preview, we found that existing leading propriety VLM 291
(GPT-4o) achieves decent performance in world model un- 292
derstanding, providing a new use case for VLM-as-a-judge 293
paradigm. Our fine-tuned judge, with only 2B parameter, 294
efficiently achieves higher accuracy. 295

3.4. Alignment Using the Fine-tuned Judger 296

VLMs trained on internet-scale visual (images and videos) 297
and text data possess broad world knowledge and strong 298
reasoning capacities, making them promising candidates 299
as “world model teachers”. Our judge model, a VLM fine- 300
tuned with human data, is well-suited to provide real-world 301
feedback to enhance video generation models as a more 302
accurate world simulator. We propose a differentiable “learn 303
from feedback” approach to improve a pre-trained video 304
diffusion model using our autoregressive judge. 305

Figure 5. We enhance video generation models by leveraging
sparse rewards from our fine-tuned judger. Solid arrows indicate
the forward process, while dashed lines are gradient directions.

Building on VADER[42], we formulate our training ob- 306
jectives as follows, given a pre-trained video diffusion model 307
pθ(.), an autoregressive reward model R(.), a grading crite- 308
ria G, and a context dataset Dc. Our training objective is to 309
maximize the reward from the world model judge: 310

J(θ) = Ec∼Dc,x0∼pθ(x0|c)[
∑
g∼G

R(x0, c, g)] (1) 311

where x0 represents the generated video. The reward 312
model evaluates the generated video based on key crite- 313
ria: instruction following, physical adherence, and com- 314
monsense as detailed in Section 3, and naively combine 315
all sub-rewards through summation. To address the non- 316
differentiability introduced by the discrete nature of lan- 317
guage models, we instead optimize the probability gap of 318
the categorical distribution over the answer tokens (e.g., 319
p(token(′′No′′))−p(token(′′Y es′′)), where p(.) represents 320
the categorical distribution after softmax for the final hid- 321
den states). This method enable us to compute the gradient 322
∇θR(x0, c, g) and propagate it back to update the parame- 323
ters of the video generation models. 324
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Table 3. Model performance on WorldModelBench on human annotations. Bold and underline indicates the best performance over all
models, and open models respectively. ”Deform.”, ”Penetr.”, ”Grav.” is short for ”Deformation”, ”Penetration”, ”Gravitation”.

Model Instruction Common Sense Physics Adherence Total

Frame Temporal Newton Mass Fluid Penetr. Grav.

Closed Models

KLING [27] 2.36 0.94 0.92 0.93 0.88 0.96 0.89 0.93 8.82
Minimax [37] 2.29 0.91 0.88 0.93 0.81 0.96 0.86 0.94 8.59
Mochi-official [3] 2.01 0.89 0.83 0.94 0.82 0.99 0.92 0.98 8.37
Runway [44] 2.15 0.87 0.78 0.91 0.69 0.94 0.82 0.91 8.08
Luma [35] 2.01 0.81 0.76 0.89 0.62 0.95 0.77 0.90 7.72

Open Models

Mochi [3] 2.22 0.63 0.63 0.94 0.58 0.97 0.71 0.94 7.62
OpenSoraPlan-T2V [28] 1.79 0.70 0.77 0.9 0.66 0.97 0.89 0.93 7.61
CogVideoX-T2V [56] 2.11 0.60 0.51 0.91 0.52 0.96 0.74 0.95 7.31
CogVideoX-I2V [56] 1.89 0.56 0.43 0.87 0.43 0.96 0.66 0.96 6.75
OpenSora-Plan-I2V [28] 1.77 0.47 0.54 0.84 0.42 0.97 0.70 0.92 6.62
Pandora [53] 1.56 0.42 0.53 0.91 0.50 0.96 0.74 0.94 6.57
T2VTurbo [32] 1.33 0.49 0.43 0.88 0.42 0.96 0.75 0.96 6.22
OpenSora-T2V [62] 1.71 0.40 0.33 0.89 0.32 0.95 0.60 0.92 6.11
OpenSora-I2V [62] 1.60 0.37 0.25 0.90 0.25 0.92 0.60 0.94 5.83

4. Experiments325

In the experiment section, we first show and analyze the326
results of current popular video generation models in our327
benchmark (§ 4.1) with their absolute average scores, pair-328
wise elo score[16, 17], and per category breakdown scores.329
Additionally, we follow [17] to demonstrate the quality of the330
votes being used. Then, we evaluate our fine-tuned judger331
(§ 4.2), by showing its accuracy in prediction human annota-332
tions, and furthermore, the video quality improvement when333
applying the reward gradients method with it as the reward334
model. Lastly, we show ablation studies (§ 4.3) on the scal-335
ing effect of number of annotations, and the correlation of336
our benchmark to the ones in existing VBench [24].337

Models We measure 14 models in total. For open-sourced338
models, we include OpenSora-v1.2 (T2V and I2V) [62],339
OpenSora-Plan-v1.3 (T2V and I2V) [28], T2VTurbo-v2 [32],340
CogVideoX-5B (T2V and I2V) [56], Pandora [53], and341
mochi [3]. For close-sourced models, we include luma-342
1.6 [35], runway-3.0 [44], minimax [37], kling-v1.5 [27],343
and an API version of mochi (Mochi-official). We use the344
recommended hyper-parameters for open-source models (de-345
tails in the appendix).346

4.1. Evaluation Results347

This section analyzes the performance of evaluated models348
and the quality of the votes.349

Detailed scores Table 3 shows scores for all models aver-350
aged over all prompts. We present four key observations:351

• Large gap to ideal video world model: The top scoring352
model, kling, has only 61% of videos correctly finish the353
specified task. Furthermore, 12% of the generated videos354

violate mass conservation law and 11% synthesize objects 355
penetrating each others. This indicates that it not yet has a 356
perfect understanding of properties of physical objects. 357

• Better commonsense metrics do not lead to a better 358
video world model. Luma has higher frame-wise quality 359
(0.81 versus 0.63) and temporal quality (0.76 versus 0.63) 360
scores than the best open model, mochi. Yet, its instruction 361
following capability is much worse than mochi (44% versus 362
53% videos finish the specified task), and similar physics ad- 363
herence (4.13 versus 4.14). While previous benchmark [24] 364
mainly focus on the common sense dimension, our results 365
further indicate dimensions that need be considered when 366
training the video generation models. 367

• I2V models are worse than their T2V counterpart. 368
We observe this trend on all three pairs of models (cogvideox 369
7.31 versus 6.75, opensoraplan 7.62 versus 6.62, opensora 370
6.11 versus 5.83). This calls for a need to improve the I2V 371
counterpart of released models. 372

• Top open models are competitive. We found that the 373
best open models, mochi and opensoraplan achieve close 374
performance to some closed models (7.62, 7.61 total score 375
versus 7.72 of luma). In particular, mochi has promising 376
instruction following and physics adherence ability. 377

Pairwise comparison We further conduct a pairwise com- 378
parison of models in Figure 6. We convert our annotations 379
to pairwise setting by enumerating all possible model combi- 380
nation for the same prompt. Following [17], we compute the 381
ELO score using Bradley-Terry model with 100 bootstrap- 382
ping rounds, using opensora as the 800 ELO calibration. We 383
further observe that there is a tradeoff between world mod- 384
eling capability: e.g. mochi-official has the highest Physics 385
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(d) Physics Adherence

Figure 6. Model ELO rating for categories in WorldModelBench.

adherence score, yet a middle instruction following score.386

Subdomain breakdown We visualize the total scores387
against all 56 subdomains using heatmap in Figure 7. We388
find that most models suffer from autonomous driving, hu-389
man activities and robotics categories, e.g. human throwing390
objects or jumping, robotics arm opening certain objects.391
These domains require complex interaction with the envi-392
ronment and accurate modeling of the subject (e.g. human393
bodies). While most models perform well on natural do-394
mains, e.g. on subjects such as plants, animals and water395
bodies. This calls for a new generation of model that specifi-396
cally address these hard categories.397

4.2. Quality of the Fine-tuned Judger398

In this section, we show the quality of our fined-tuned judger399
in two dimensions. Firstly, we compare its accuracy against400
leading visual language models (GPT-4o) with various strate-401
gies on the test set of our benchmark. Then, we show that402
its score can be used to improve OpenSora-T2V.403
Accuracy on test set To evaluate the effectiveness of our404
world model judger, we divide all benchmark votes into a405
training set and a test set. For each of the 350 prompts, we406
use videos from 14 different video generation models and407
annotations from up to 3 distinct voters. We randomly select408
outputs from 12 models, along with the original video (the409
video that generates the text prompt and the first frame as410
conditions, receiving full rewards), to construct the training411
set, while reserving the rest 2 models for the test set. Our412
fine-tuned judger is thus trained on a diverse mix of high-413
reward (high-quality) and low-reward (low-quality) samples,414
enabling it to effectively distinguish quality differences and415
predict scores for unseen videos from the same prompts.416

Our dataset includes a total of 4421 videos with 8 human417

Table 4. Model prediction error results of different judge
choices on WorldModelBench. VILA-2B is a vision-language
model with 2B parameters, trained on image and video understand-
ing tasks [33]. We report the average error rate between the model’s
predictions and the ground truth.

Model Prediction Error Instruction (%) Common (%) Physics (%)
+Method following ↓ Sense ↓ Adherence ↓

GPT-4o 29.3 35.0 36.0
+CoT 29.7 28.5 45.6

Gemini-1.5-Pro 30.7 34.5 29.3
+CoT 29.3 19.5 28.3

Qwen2-VL-2B 30.3 39.0 39.7
VILA-2B +Zero-Shot 21.0 28.0 24.0
VILA-2B +CoT Fine-tuned 32.3 16.4 29.7

annotations for training, and 713 videos for evaluation (ex- 418
cluding some samples that closed API endpoints refuse). For 419
prompts with multiple votes, we use the majority agreement 420
as the ground truth sparse labels. To enhance alignment with 421
world knowledge and the underlying reasoning processes, 422
we prompt GPT-4o and Gemini-1.5-pro to generate reason- 423
ing chains on the training set, and retain chains that reach the 424
correct final answer as additional training data. We then com- 425
pare our fine-tuned judger’s accuracy with different decoding 426
strategies applied to GPT-4o (with zero-shot, and chain-of- 427
thought prompting [50]). Results from Table 4 show that 428
the find-tuned world model judger achieves higher accuracy 429
than GPT-4o model. We further show comparison between 430
humans and judge scores in Table 8 and Appendix 6.4. 431
Using the judger as the reward model We apply the algo- 432
rithm in § 3.4 with our judger on OpenSora-v1.2 T2V. We 433
show qualitative samples in Figure 8. This shows positive 434
signs for future works to further improve the reward model. 435

4.3. Correlation to Established Benchmarks 436

Figure 1 provides a motivating example of WorldModel- 437
Bench, over existing general video quality benchmark. In 438
this section, we conduct an in depth comparative analysis 439
with VBench [23]. 440

We evaluate generated videos on WorldModelBench con-
ditions with VBench grading procedure for Opensora, Pan-
dora, Luma, minimax, mochi, Cogvideox, Kling and runway.
We compute a pairwise win rate between a pair of models by
averaging their pairwise win or loss on the same text (and
image) condition, over all available conditions in WorldMod-
elBench, where the win rate WA,B for model A and model
B is calculated as follows:

WA,B =
1

|prompts|
∑

p∈prompts

{
1 if evalA,p > evalB,p

0 otherwise

In Figures 9a and 9b, each point represents the win rate 441
between two models, with the x-axis denoting the win rate 442
according to VBench and the y-axis denoting the win rate 443
according to WorldModelBench. Figure 9a illustrates the 444
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"A bear sitting at a picnic table, enjoying a slice
of cake, with a forest scene in the background."

Ours

Original

"A goose playing chess."

Temporal Consistency Instruction Following

Figure 8. Improvement of our world model gradient method. The bottom row shows videos generated by the original Open-Sora 1.2, while
the bottom row features videos produced by the reward-fine-tuned Open-Sora. The original issues of video flickering (left) and instruction
non-compliance (right) are mitigated through learning from world model rewards. More results can be found at Figure 11.
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Figure 9. Correlation of model win rates based on different dimen-
sions on VBench and WorldModelBench. Each point represents
the win rate between two models. The x-axis denotes the win rate
according to VBench, while the y-axis denotes the win rate accord-
ing to WorldModelBench.

win rates when models are evaluated solely on frame-wise445
quality, while Figure 9b shows the win rates when models446
are evaluated based on physics adherence using WorldMod-447
elBench and on all dimensions using VBench. We observed448
a correlation coefficient of 0.69 between the frame-wise449
quality win rates, indicating a relatively strong correlation.450
This suggests that both benchmarks are effective in assess-451
ing general video quality and that our benchmark aligns452
with established standards. However, when examining the453

benchmarks’ ability to assess physics adherence, the correla- 454
tion diminishes significantly to merely 0.28. This indicates 455
that VBench does not effectively distinguish between videos 456
based on their adherence to physical laws. Supporting this 457
observation, the supplementary material presents an analysis 458
of VBench’s other dimension scores, revealing their inability 459
to discriminate based on physics adherence. 460

5. Conclusion 461

This paper introduces WorldModelBench to evaluate video 462
world models. We found that existing general video quality 463
benchmark is insufficient in evaluating world modeling ca- 464
pability, such as physics adherence. WorldModelBench pro- 465
vides fine-grained world modeling capability feedback to ex- 466
isting video generation models on commonsense, instruction 467
following, and physics adherence dimensions. We collect a 468
large scale of human annotations of 67K to analyze contem- 469
porary video generation models as world models. We further 470
fine-tune a VLM to accurately perform automatic judgement 471
on the benchmark. Finally, we show promising signals that 472
maximizing the rewards on the provided judge can improve 473
current video generation models world modeling capability. 474
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WorldModelBench: Judging Video Generation Models As World Models

Supplementary Material

6. Appendix746

6.1. Correlation to VBench’s Dimensions747

Section 4.3 illustrates the high correlation (0.69) between748
frame-wise quality win rates of WorldModelBench and749
VBench, as well as the low correlation (0.28) between World-750
ModelBench’s physics adherence win rates and VBench’s751
total score win rates. In this section, we present an analy-752
sis of the correlations between WorldModelBench’s physics753
adherence and VBench’s other dimension scores.754

We compare all VBench dimensions that support cus-755
tomized videos, including subject consistency, background756
consistency, motion smoothness, dynamic degree, aesthetic757
quality and imaging quality. Using the same metrics as758
in Section 4.3, we compute the correlation of model win759
rates on each VBench dimension and the physics adherence760
win rates on WorldModelBench. According to Table 5 and761
Figure 10, the highest correlation coefficient is 0.41 (for aes-762
thetic quality), and the lowest correlation coefficient is -0.05763
(for dynamic degree). Both are significantly lower than the764
0.69 correlation coefficient observed for frame-wise quality765
in Section 4.3. These findings support that VBench does not766
effectively distinguish videos based on their adherence to767
physical laws, highlighting the importance of our benchmark768
in evaluating physical realism.769

Table 5. Correlation coefficient of VBench Dimensions with
Physics Adherence

VBench Dimension Correlation Coefficient
Subject Consistency 0.15
Background Consistency 0.19
Motion Smoothness 0.34
Dynamic Degree -0.05
Aesthetic Quality 0.41
Imaging Quality 0.24

6.2. More Examples of Reward Optimization770

We provide more examples as the results of optimization771
from the world model judge feedback, as shown in Fig-772
ure 11. Our method shows potential in leveraging world773
model feedback to enhance instruction following, improve774
physics adherence, and achieve better aesthetics, leaving775
opportunities for future exploration.776

6.3. Model Inference details777

We provide the model inference details for open models in778
our evaluation in section 4.779
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Figure 10. Correlation of model win rates based on all dimensions
on VBench and WorldModelBench’s physics adherence.

CogVideoX [56] We use CogVideox-5B T2V and I2V 780
model. We use a classifier guidance ratio of 6.0, and 50 781
step DDIM solver, following the official usage of the model. 782
Open-Sora [62] We use 720P, 4 second, aspect ratio 9:16, 783
30 sampling steps, with a flow threshold 5.0 and aesthetic 784
threshold 6.5, as recommended by the official website. 785
Pandora [53] We use its official checkpoint, with the default 786
setting provided in the github, with 50 DDIM steps. 787
Mochi [3] we use the default setting with a cfg scale of 4.5, 788
with 65 sampling steps. 789
t2v-turbo [32] We use 4 steps of sampling, 7.5 as classifier 790
free guidance scale, 16 fps and 16 frames as recommended 791
by the official usage. 792
Open-Sora-Plan [28] We use fps 18, guidance scale 7.5, 793
100 sampling steps, 352 as height and 640 as width as rec- 794
ommended by the official usage. 795

6.4. The judge reliability for instruction following 796

We further demonstrate the judge’s instruction following 797
capacity by computing the Kendall rank correlation between 798
the judge predictions and human annotations, and get τ = 799
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0.96 (1 as the max value). We show the score comparison in800
Table 6, where the average prediction error is 2.79%.801

Model Scores ↑ Prediction
Human (H) Judge (J) Error (100%)

Closed Models
kling 2.36 2.31 -2.12%
minimax 2.29 2.28 -0.44%
mochi-official 2.01 2.00 -0.50%
runway 2.15 2.17 0.93%
luma 2.01 1.98 -1.49%
Open Models
mochi 2.22 2.06 -7.21%
OpenSoraPlan-T2V 1.79 1.72 -3.91%
CogVideoX-T2V 2.11 2.03 -3.79%
CogVideoX-I2V 1.89 1.78 -5.82%
OpenSora-Plan-I2V 1.77 1.76 -0.56%
pandora 1.56 1.56 0.00%
T2VTurbo 1.33 1.37 3.01%
OpenSora-T2V 1.71 1.61 -5.85%
OpenSora-I2V 1.60 1.42 -11.25%

Table 6. Score comparison between scores provided by humans
and by the judge model, on instruction following. The averaged
predicting error is 2.79%.

6.5. WorldModelBench-Hard802

Based on the previous voting results, we curate a smaller803
hard subset WorldModelBench-Hard to facilitate the model804
evaluation. Specifically, WorldModelBench-Hard consists805
of 45 prompts with the lowest average score from the five806
closed-source models. We provide the detailed score compar-807
ison between all models for the hard subset in Table 7. The808
most performance kling has observed 1.21 regression (from809
9.08 to 7.87). These problems are lightweight to evaluate,810
and also hard enough to distinguish models.811

6.6. Discussion812

This section discusses several potential limitations and as-813
sumptions in the paper.814
Compare to VideoPhy VideoPhy focuses on daliy objects,815
which are not the most relevant domains to world models![4].816
We directly measure performance on application domains817
such as robotics. In addition, WorldModelBench supports818
image-to-video models, and will open-source fine-grained819
labels.820
Sample size WorldModelBench has a considerably a smaller821
size of other video benchmarks, e.g.,VideoPhy (688). We822
choose to lower the amount of prompts in our benchmark823
to enable fast evaluation due to the high inference cost of824
comtemporary models (e.g. Mochi takes 5 minutes for 4825
A100 GPUs). Nevertheless, WorldModelBench is indicative826
(Table 3): top 2 propriety models has a clear separation (8.82827
versus 8.59)828

Model Full dataset Hard Subset Score
Closed Models
kling 9.08 7.87
minimax 8.92 7.27
mochi-official 8.66 7.24
runway 8.63 7.31
luma 8.24 6.58
Open Models
mochi 7.91 6.93
OpenSoraPlan-T2V 8.04 7.04
CogVideoX-T2V 7.65 6.13
CogVideoX-I2V 7.08 6.27
OpenSora-Plan-I2V 6.86 5.67
pandora 6.90 6.49
T2VTurbo 6.56 5.64
OpenSora-T2V 6.17 4.82
OpenSora-I2V 5.82 4.71

Table 7. Comparison of Judge Model Scores and Hard Subset
Scores across Closed and Open Models.

Model Scores ↑ Prediction
Human (H) Judge (J) Error (100%)

Closed Models
kling 8.82 9.08 2.95%
minimax 8.59 8.92 3.84%
mochi-official 8.37 8.66 3.46%
runway 8.08 8.63 6.81%
luma 7.72 8.24 6.74%
Open Models
mochi 7.62 7.91 3.81%
OpenSoraPlan-T2V 7.61 8.04 5.65%
CogVideoX-T2V 7.31 7.65 4.65%
CogVideoX-I2V 6.75 7.08 4.89%
OpenSora-Plan-I2V 6.63 6.86 3.47%
pandora 6.57 6.90 5.02%
T2VTurbo 6.22 6.56 5.47%
OpenSora-T2V 6.11 6.17 0.98%
OpenSora-I2V 5.83 5.82 -0.17%

Table 8. Score comparison between scores provided by hu-
mans and by the judge model. The averaged predicting error
( 1
n

∑n
i=1

Judge−Human
Human

) is 4.1%. The highest prediction error is
6.81%, showing the reliablity of our judge model.
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Table 9. Model performance on WorldModelBench (graded by our judge). Bold and underline indicates the best performance over all
models, and open models respectively. ”Deform.”, ”Penetr.”, ”Grav.” is short for ”Deformation”, ”Penetration”, ”Gravitation”.

Model Instruction Common Sense Physics Adherence Total

Frame Temporal Newton Deform. Fluid Penetr. Grav.

Closed Models

KLING [27] 2.32 0.99 0.97 1.00 0.90 1.00 0.93 0.99 9.10
Minimax [37] 2.28 0.99 0.93 1.00 0.86 0.99 0.88 0.99 8.92
Mochi-official [3] 2.00 0.97 0.89 1.00 0.88 1.00 0.93 0.99 8.66
Runway [44] 2.17 0.99 0.87 1.00 0.77 0.98 0.89 0.96 8.64
Luma [35] 1.98 0.96 0.81 1.00 0.70 0.98 0.87 0.95 8.24

Open Models

OpenSoraPlan-T2V [28] 1.72 0.83 0.85 1.00 0.77 0.99 0.91 0.98 8.04
Mochi [3] 2.06 0.78 0.68 0.99 0.63 0.99 0.79 0.98 7.91
CogVideoX-T2V [56] 2.03 0.75 0.60 0.99 0.58 0.99 0.73 0.98 7.65
CogVideoX-I2V [56] 1.78 0.61 0.52 1.00 0.52 0.99 0.68 0.99 7.08
Pandora [53] 1.56 0.49 0.53 1.00 0.55 0.98 0.79 0.99 6.90
T2V-Turbo [32] 1.37 0.64 0.44 0.99 0.41 0.99 0.73 0.98 6.56
OpenSora-T2V [62] 1.61 0.40 0.29 0.98 0.30 0.98 0.64 0.97 6.17
OpenSora-I2V [62] 1.42 0.36 0.18 0.98 0.22 0.98 0.68 0.98 5.82

Original

Ours

Fluid Constitutive Law

"Waves crash energetically against the rocks, sending
up sprays of white foam under a clear blue sky."

"A lone elephant stands in a vast grassland under a bright blue sky
dotted with scattered clouds. the background includes some sparse
dead trees and a flat landscape stretching into the distance."

Deformation & Instruction Following

Original

Ours

Gravity & Newton's First Law

"Fireworks bloom in the night sky."

Newton's Third Law

"A small boat moves across a calm lake under a sky of blue and
white clouds, leaving gentle waves rolling backward as it moves."

wave

Figure 11. Improvement of our world model gradient method. “Original” shows videos generated by the original Open-Sora 1.2, while
“Ours” features videos produced by the reward-fine-tuned Open-Sora. Fine-tuning with the ensembled reward leads to better adherence to
world physics, such as: (top left) alleviating the sticky properties of fluids, (top right) recovering from deformation, (bottom left) simulating
waves as a result of Newton’s third law, and (bottom right) correcting violations of inertia.
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