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1. Introduction

Recent advances in visual generation have sparked growing
interest in world generation. The rapid progress in video
generation [3, 19], 3D scene generation [4, 20, 21], and
4D scene generation [1] has shown generating high-quality
individual scenes. However, as the concept of world genera-
tion expands, users demand to generate more comprehensive
worlds that seamlessly integrate multiple varied scenes with
detailed spatial layout controls rather than disconnected in-
dividual environments.

Achieving this vision requires a unified evaluation bench-
mark that systematically assesses different types of world
generation models across large-scale, diverse worlds. Ex-
isting benchmarks mainly focus on video generation and
evaluate only individual scene generation. For example,
VBench [10] primarily evaluates text-to-video (T2V) tasks
without explicit spatial layout control, restricting their evalu-
ations to single scenes (Figure 1). Moreover, current bench-
marks often lack camera specifications and reference images,
making them incompatible with many state-of-the-art 3D/4D
scene generation methods that require these inputs.

We introduce WorldScore, a unified benchmark for world
generation. Our key design is to decompose world generation
into a sequence of next-scene generation tasks, where each
step is characterized by a triplet of (current scene,
next scene, layout). For unified evaluation across
different methods, we provide both an image and a text
prompt for a current scene, as well as both camera
matrices and a textual description for a layout specifi-
cation. This design allows our WorldScore benchmark to
evaluate various approaches including 3D, 4D, text-to-video,
and image-to-video models on large-scale world generation.
All methods are evaluated on a common output format, i.e.,
rendered or generated videos, to enable direct comparison
of generation across different types of approaches.

Our evaluation metric, WorldScore, is computed by ag-
gregating three key aspects: controllability, which measures
the adherence of the generated worlds w.r.t. control inputs;
quality, which measures the fidelity and consistency; dynam-
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Figure 1. While existing video benchmarks like VBench [10] rate
Models A and B similarly based on single-scene video quality,
our WorldScore benchmark differentiates their world generation
capabilities by identifying that Model B fails to generate a new
scene or follow the instructed camera movement.

ics, which measures how much the generated worlds exhibit
accurate and stable motions.

To enable a comprehensive assessment, we curate a di-
verse dataset of 3000 high-quality test examples covering
both static and dynamic world generation scenarios across
different visual domains. We conduct extensive experiments
by evaluating 17 diverse models, including image-to-video
models (with 2 leading closed-source models), text-to-video
models, 3D scene generation models, and a 4D generation
model. Through the comprehensive evaluation, we reveal
key insights and challenges in current world generation ap-
proaches, providing valuable guidance for future research.

2. The WorldScore Benchmark

Design overview. Our goal is to establish an evalua-
tion benchmark for world generation that unifies different
methodological approaches. Our WorldScore benchmark

1

https://haoyi-duan.github.io/WorldScore/


Benchmark # Examples Multi-Scene Unified Long Seq. Image Cond. Multi-Style Camera Ctrl. 3D Consist.

TC-Bench [6] 150 ✗ ✗ ✗ ✓ ✗ ✗ ✗

EvalCrafter [14] 700 ✗ ✗ ✗ ✗ ✗ ✗ ✗

VBench [11] 800 ✗ ✗ ✗ ✗ ✗ ✗ ✗

T2V-CompBench [16] 700 ✗ ✗ ✗ ✗ ✗ ✗ ✗

WorldModelBench [12] 350 ✗ ✗ ✗ ✓ ✗ ✗ ✗

WorldScore (Ours) 3000 ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 1. Comparison of Benchmarks. Our WorldScore benchmark is designed to evaluate various world generation approaches including
3D, 4D, I2V and T2V models. It is designed to generate multiple scenes with varying sequence lengths.
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Figure 2. Overview of the WorldScore benchmark design. Top left: World generation is decomposed into a sequence of next-scene
generation tasks, where each step follows a structured world specification defining both spatial layout and semantic content. Bottom left: The
unified world specification is used to instruct different types of models, including video generation and 3D/4D generation models. Bottom
right: All models output videos for evaluation. Top right: Output videos are evaluated using the WorldScore metrics, which assess three
fundamental aspects including controllability, quality, and dynamics.

introduces three key components: (1) a standardized world
specification, (2) a carefully curated dataset, and (3) multi-
faceted metrics. We show an overview in Figure 2.

2.1. World Specification

Formulation. We decompose the world generation task into
a sequence of next-scene generation tasks, where each step
is specified by a triplet of (C,N ,L), where C = {I,P}
denotes the current scene given by a scene image I and a
text prompt P , N denotes the next-scene text prompt, and
L = {T ,Y} denotes the layout given by a camera trajectory
T = (C1,C2, · · · ,CN ) where Ci denotes a camera matrix
and a text prompt of camera movement Y . Then, a world
generation model is instructed to generate a video:

V = gworld(wproc(C,N ,L)), (1)

where V denotes a video, gworld denotes the world generation
model, and wproc denotes a model-specific pre-processing to
accommodate the required inputs.
Static and dynamic worlds. We have two types of tasks:

Static world generation: We instruct a model to generate
varying-length scene sequences for controllability and qual-
ity assessment. Here, the next-scene text prompt N describes
the new scene contents, and the layout L describes large cam-
era movements.

Dynamic world generation: We instruct a model to generate
in-scene motion for dynamics assessment. Here, the next-
scene text prompt N describes the same scene content as
C but with dynamics changes, e.g., an animal moving. The
layout L explicitly specifies a fixed camera position without
any camera motion.

2.2. Dataset Curation
Our dataset consists of 3000 examples (world specifications),
including 2000 for static world generation and 1000 for
dynamic world generation.

Curation on current scene C. For static world generation,
we define 10 categories of scenes including 5 indoor and 5
outdoor scene types. Then, we source images from open-
source scene datasets and supplement with an online source,



Unsplash. We apply a very rigorous filtering strategy to
ensure high quality and high diversity. Then, we query a
Vision-Language Model (VLM), GPT-4o, to generate cap-
tions P for these images and do a 10-way classification to
put each of them into a category. Finally, we further fil-
ter each category by keeping the first 100 highest-quality
images, leading to 1000 images I and their corresponding
prompts P .

Then, we create a stylized counterpart for each example in
the photorealistic domain. For each example, we randomly
pick a style from a set of 7 style candidates, and create a
new text prompt P by adding the style text to the prompt of
the photorealistic example. Then, we leverage a commercial
style-controlled text-to-image generation model to generate
the stylized counterpart image I.

For dynamic world generation, we define 5 categories
of motion types and source Unsplash to manually curate
100 images for each of the category. We follow a similar
process as in the static world generation examples to create
text prompts and stylized counterpart, eventually leading to
a total of 1000 examples.

Curation on next-scene text prompts N . Each world gen-
eration consists of a sequence of next-scene generation tasks.
The next-scene text prompt N can have varying lengths. To
generate coherent and contextually relevant scene sequences,
we adopt an auto-regressive scene description generation
process [20], that is, we instruct an LLM to generate the
next-scene text prompt that should be different from all cur-
rent scene text prompts.

Curation on layouts L. A layout L = {T ,Y} is given
by a camera trajectory T = (C1,C2, · · · ,CN ) and a text
prompt of camera movement Y . We curate a set of 8 cam-
era movements which are widely used in movie industry,
including “push in”, “pull out”, “orbit left”, “orbit right”,
“move left”, “move right”, “pan left”, and “pan right”. For
each static scene generation example, we randomly assign a
layout L to a next-scene generation task.

2.3. The WorldScore Metrics
Our WorldScore metrics include two overall scores:
WorldScore-Static which measures only the static world
generation capability, and WorldScore-Dynamic which mea-
sures dynamic world generation capability in addition to
static worlds. They are defined as the aggregation of several
individual metrics in the three key aspects: controllability,
quality, and dynamics.

Controllability. We have three metrics, including
camera controllability to evaluate how the models adhere
to the instructed layout L = {T ,Y}, object controllability
to evaluate whether the objects specified in the next-
scene prompt N appear in the generated next scene, and
content alignment to assess whether the generated scenes

are aligned with the entire text N .

Quality. We have four metrics: (1) 3D consistency evaluates
the 3D consistency in the static world videos. This metric fo-
cuses on how the geometry of a scene remains stable across
frames, regardless of slight changes in visual textures. (2)
Photometric consistency: While 3D consistency focuses on
geometry while ignoring appearance, photometric consis-
tency measures the stability in appearance (e.g., textures)
across frames. (3) Style consistency: We compute the dif-
ference between the Gram matrices of the first frame and
the last frame of a generated video. (4) Subjective quality:
We use automatic metrics to evaluate the human perceptual
quality of the generated scenes.

Dynamics. We have three metrics, including
motion accuracy to quantify accurate motion placement,
motion magnitude to measure a world generation model’s
ability to create large motions, and motion smoothness.

Score normalization and aggregation. We apply a linear
normalization based on empirical bounds to ensure that the
final scores fall within the range between zero to one. Then,
we compute the arithmetic mean of the dimension scores
within control and quality aspects to obtain our WorldScore-
Static. We incorporate three dynamics dimension scores
into the aggregation, resulting in WorldScore-Dynamic.

3. Results

We show the WorldScore benchmark results in Table 2. We
draw several observations and identify key challenges:

3D models excel in static world generation. From the
WorldScore-Static results, we observe that 3D scene gen-
eration models generally perform better, e.g., Wonder-
World [21] (72.69) and LucidDreamer [4] (70.40) are the
top-2, much better than the best video model CogVideoX-
I2V [19] (62.15). This is because 3D models inherently have
high camera controllability and, thus, better content align-
ment due to the larger space they can create, as well as high
3D and photometric consistency. However, they do not allow
for the generation of dynamic worlds. When extended to 4D
for dynamics, 4D-fy [1] does not perform well, likely due to
the intrinsic difficulty in 4D scene generation.

Video models lack camera controllability. Even
CogVideoX-T2V [19], the best video generation model in
camera controllability (40.22), scored much lower than any
3D/4D generation model. This is the main challenge for
video generation models to achieve good world generation.

Trade-offs exist in motion smoothness and motion magni-
tude. Looking at the motion magnitude and motion smooth-
ness metrics, we observe that larger motion often comes at
the cost of lower smoothness, revealing current challenge
for video models in maintaining both significant motion and
natural transitions.



Models
WorldScore Controllability Quality Dynamics

-Static -Dynamic
Camera

Ctrl
Object

Ctrl
Content
Align

3D
Consist

Photo
Consist

Style
Consist

Subjective
Qual

Motion
Acc

Motion
Mag

Motion
Smooth

Gen-3 [15] 60.71 57.58 29.47 62.92 50.49 68.31 87.09 62.82 63.85 54.53 27.48 68.87
Hailuo [8] 57.55 56.36 22.39 69.56 73.53 67.18 62.82 54.91 52.44 63.46 27.20 70.07

DynamiCrafter [17] 52.09 47.19 25.15 47.36 25.00 72.90 60.95 78.85 54.40 41.11 39.25 26.92
VideoCrafter1-T2V [2] 47.10 43.54 21.61 50.44 60.78 64.86 51.36 38.05 42.63 11.76 75.00 18.87
VideoCrafter1-I2V [2] 50.47 47.64 25.46 24.25 35.27 74.42 73.89 65.17 54.85 55.63 25.00 42.49
VideoCrafter2 [2] 52.57 47.49 28.92 39.07 72.46 65.14 61.85 43.79 56.74 47.12 30.40 29.39
T2V-Turbo [13] 45.65 40.20 27.80 30.68 69.14 38.72 34.84 49.65 68.74 34.87 40.09 7.48
EasyAnimate [18] 52.85 51.65 26.72 54.50 50.76 67.29 47.35 73.05 50.31 75.00 31.16 40.32
CogVideoX-T2V [19] 54.18 48.79 40.22 51.05 68.12 68.81 64.20 42.19 44.67 25.00 47.31 36.28
CogVideoX-I2V [19] 62.15 59.12 38.27 40.07 36.73 86.21 88.12 83.22 62.44 69.56 26.42 60.15

SceneScape [7] 50.73 35.51 84.99 47.44 28.64 76.54 62.88 21.85 32.75 0.00 0.00 0.00
Text2Room [9] 62.10 43.47 94.01 38.93 50.79 88.71 88.36 37.23 36.69 0.00 0.00 0.00
LucidDreamer [4] 70.40 49.28 88.93 41.18 75.00 90.37 90.20 48.10 58.99 0.00 0.00 0.00
WonderJourney [20] 63.75 44.63 84.60 37.10 35.54 80.60 79.03 62.82 66.56 0.00 0.00 0.00
InvisibleStitch [5] 61.12 42.78 93.20 36.51 29.53 88.51 89.19 32.37 58.50 0.00 0.00 0.00
WonderWorld [21] 72.69 50.88 92.98 51.76 71.25 86.87 85.56 70.57 49.81 0.00 0.00 0.00

4D-fy [1] 27.98 32.10 69.92 55.09 0.85 35.47 1.59 32.04 0.89 22.22 22.88 80.06

Table 2. WorldScore evaluation results. The 2nd to 5th sections: closed-source video models, open-source video models, 3D models, 4D
models. Abbreviations: Ctrl=Controllability, Align=Alignment, Consist=Consistency, Photo=Photometric, Qual=Quality, Acc=Accuracy,
Mag=Magnitude, Smooth=Smoothness.

Larger motion does not necessarily mean more accurate
motion placement. The correlation between the motion
magnitude and accuracy is weak. This implies that models
that can produce large motion do not guarantee correct mo-
tion placement to follow instructions. Instead, they could
hallucinate unintended camera motion or irrelevant motion.
More robust motion modeling may be needed to balance the
three dynamics metrics.
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