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Abstract

Diffusion models have demonstrated remarkable potential
in generating high-quality images. However, their ten-
dency to replicate training data raises serious privacy con-
cerns, particularly when the training datasets contain sen-
sitive or private information. Existing mitigation strategies
primarily focus on reducing image duplication, modifying
the cross-attention mechanism, and altering the denoising
backbone architecture of diffusion models. Moreover, re-
cent work has shown that adding a consistent small amount
of noise to text embeddings can reduce replication to some
degree. In this work, we begin by analyzing the impact of
adding varying amounts of noise. Based on our analysis, we
propose a fine-grained noise injection technique that prob-
abilistically adds a larger amount of noise to token embed-
dings. We refer to our method as Fine-grained Probabilis-
tic Addition of Noise (FPAN). Through our extensive exper-
iments, we show that our proposed FPAN can reduce repli-
cation by an average of 28.78% compared to the baseline
diffusion model without significantly impacting image qual-
ity, and outperforms the prior consistent-magnitude-noise-
addition approach by 26.51%. Moreover, when combined
with other existing mitigation methods, our FPAN approach
can further reduce replication by up to 16.82% with similar,
if not improved, image quality.

1. Introduction
Diffusion models [6, 11, 22] have become a dominant
paradigm in generative modeling due to their strong capa-
bilities in producing high-quality and diverse images. Com-
pared to traditional approaches like Variational Autoen-
coders (VAEs) [12] and Generative Adversarial Networks
(GANs) [8], diffusion models offer superior fidelity, diver-
sity, and controllability. In particular, text-to-image diffu-
sion models such as DALL·E [20], Stable Diffusion [22],
and Imagen [24] excel at generating images that are both
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semantically aligned with input captions and photorealisti-
cally detailed. These models iteratively denoise Gaussian
noise based on textual prompts, producing aligned outputs
after a fixed number of steps. Despite their success, recent
studies [2, 27, 28] have shown that diffusion models are sus-
ceptible to memorizing training data, often generating out-
puts that closely resemble specific training images. This
replication raises concerns over copyright infringement and
privacy leakage, especially when models are fine-tuned on
custom or sensitive small datasets [27].

Prior mitigation strategies [4, 9, 14, 15, 21, 25, 28, 31,
32] that address the replication issue in diffusion models
fall into three categories: optimization of the input image or
text embeddings during training, modification of the cross-
attention module, and architectural changes to the denois-
ing backbone model. In the category of optimization of the
input image or text embeddings, Somepalli et al. [28] in-
troduce Random Token Replacement and Addition (RT),
which randomly replaces tokens or inserts additional to-
kens into captions at random positions. Li et al. [14]
introduce the Dual Fusion method (DF), which leverages
large language models (LLMs) to generalize captions and
further mitigates replication by weighted fusing fine-tuning
data with data from another source. Modifications of the
cross-attention module try to prevent diffusion models from
overemphasizing tokens that are likely to lead to replication
via masking [21]. Within the category of architectural mod-
ifications, Li et al. [15] improve the U-Net [23] architec-
ture by dynamically modifying the skip connections at spe-
cific timesteps to limit the impact of the replication-causing
direct connections between the upsampling and downsam-
pling blocks.

Prior work shows that perturbing text embedding with
a small amount of noise provides a straightforward mitiga-
tion strategy [28], as specific captions have been shown to
contribute to replication in diffusion models [14, 28]. To
enable finer-grained control over noise addition, and to ex-
plore the potential of increasing noise intensity for stronger
replication mitigation, we studied the impact of a much
wider range of noise on token embeddings, and found that



as noise intensity increases, the quality of the generated im-
ages first decreases, then improves, and eventually degrades
again. Using a modified CLIPScore [17] to measure the de-
gree of model overfitting, we show that this trend can be
attributed to the model overfitting, well-fitting, and under-
fitting the training data, respectively.

Building upon this insight, we propose a Fine-grained
Probabilistic Addition of Noise (FPAN) to balance the
trade-off between generation quality and replication. Our
fine-tuning strategy operates at the fine-grained token em-
bedding level and probabilistically injects relatively high-
intensity noise into the tokens. Our empirical results
demonstrate that our proposed method, in comparison to the
baseline model, can significantly reduce replication score
while preserving high generated image quality. When in-
tegrated with prior replication mitigation techniques [14,
15, 21, 28], our method consistently enhances their perfor-
mance, highlighting its potential for achieving synergistic
improvements in diffusion model training.

We summarize our contributions as follows.1) We ob-
serve that as we increase the intensity of injected noise to
token embedding the image quality tends to first becom-
ing worse, then better, and then worse again and we show
that this trend can be attributed to the model being in the
states of overfitting, well-fitting, and underfitting, respec-
tively. 2) We propose our FPAN strategy, which probabilis-
tically injects high-intensity noise into fine-grained token
embeddings during training. 3) We present experimental
results demonstrating that our strategy provides competi-
tive trade-offs between generation quality and replication.
4) We further show that our method can be effectively in-
tegrated with other mitigation techniques to achieve signif-
icant synergistic effects in further reducing replication.

2. Background and Related works

2.1. Diffusion Models

Denoising Diffusion Probabilistic Models (DDPMs) [11]
employ a forward process that gradually adds Gaussian
noise to an image and a reverse process that reconstructs
the original image by progressively removing noise. Due to
high computational overhead in DDPMs, Latent Diffusion
Models (LDMs), such as Stable Diffusion (SD) [22], have
been explored. LDMs apply a conditional diffusion process
to a compressed latent space transformed by a Variational
Autoencoder (VAE) [12].

Fine-tuning a pretrained SD model leverages a dataset
consisting of N image-caption pairs, expressed as D =
{(x(i), y(i))}Ni=1, where x(i) denotes the ith image, and y(i)

represents its corresponding caption. During the forward
corruption process, each clean image x is progressively cor-
rupted through the incremental addition of Gaussian noise
over T discrete timesteps, resulting in pure Gaussian noise.

The noisy representation of an image x at timestep t is de-
noted by xt, and the noise introduced at this timestep is
represented as ϵt. In the backward denoising process, the
model M is fine-tuned to estimate the noise added at each
timestep t, conditioning on the caption y. The predicted
noise is subsequently removed from the noisy input, facil-
itating a step-wise reconstruction of the original clean im-
age. Formally, the optimization objective during training is
expressed as follows:

J (θ) = Et∈[1,T ],ϵt∼N (0,I)

[
∥ϵt −M(xt, t, e)∥22

]
, (1)

where e is the text embedding obtained by applying CLIP
[19] text encoder to original caption y.

2.2. Replication Score
To evaluate the degree of replication in generated images,
we leverage the Replication Score [14, 15, 27, 28], denoted
as R. R is defined as the 95th-percentile statistic of the
image-level similarity score between the generated images
and their nearest matches in the training set.

In other words, a top-1 similarity for every generated im-
age xgen is computed as:

SimTop1(xgen) = max
xd∈D

sim
(
ϕ(xgen), ϕ(xd)

)
, (2)

where ϕ extracts image embeddings using SSCD [18] 1, and
sim is typically dot product. Then SimTop1(xgen) among all
xgen are collected into a set to compute the replication score
R as:

R(G) = Q0.95{SimTop1(xgen)|xgen ∈ G}, (3)

where G is the generated image set and Q0.95 means the
95th-percentile value in the set.

The reason why R only focuses on top 5% of generated
images by similarity is to ensure the evaluation focuses on
replicated samples rather than the entire dataset, which oth-
erwise may be misleading because most generations may be
nowhere near direct copies, but a small fraction of generated
images can still be very close to a training image. By zoom-
ing in on the right-hand tail of similarity score distribution,
R captures the worst-case copying behavior. Specifically, a
higher R indicates a higher level of replication.

2.3. Mitigation strategies
Prior researches [14, 28] suggest that replication is primar-
ily driven by image duplication and highly specific cap-
tions. To address this issue, several mitigation strategies
have been proposed, which can be broadly categorized into

1Here we use pretrained sscd disc large model. It can be found
and downloaded from https://github.com/facebookresearch/sscd-copy-
detection/tree/main



three classes: model input-based strategies, cross-attention-
based strategies, and architectural modifications. Within
the category of model input-based strategies, Li et al. [14]
proposed a generality score and leveraged a large language
model (LLM) [1, 29] to increase caption abstraction. They
also introduced a dual fusion technique that merges training
images with external image-caption pairs to address dupli-
cation. Anti-Memorization Guidance (AMG) [4] employs
despecification, deduplication, and dissimilarity guidance
to mitigate replication. Multiple Captions(MC) [28] uses
BLIP to generate 20 captions per image and randomly sam-
ples one during each fine-tuning iteration. Random Caption
Replacement (RC) [28] uses random words to replace the
caption of an image. Caption Word Repetition(CWR) [28]
randomly choose a word from the given caption and insert
it into a random location in the caption.

In addition, various cross-attention-based strategies have
been proposed. Ren et al. [21] adjusted attention scores to
reduce reliance on ”trigger tokens” during inference, while
chen et al. [3] introduced the Bright Ending (BE) mask to
lower dependence on final prompt tokens. Zhang et al. [35]
reduce the influence of specific tokens through attention
resteering, effectively suppressing the model’s reliance on
memorized concepts. Hintersdorf et al. [10] proposed iden-
tifying and removing neurons in cross-attention layers re-
sponsible for replication.

Furthermore, architectural modifications have also been
explored. Li et al. [15] proposed RAU-Net, incorporating an
Information Transfer Block into U-Net’s skip connections
to prevent direct transmission of high-resolution informa-
tion.

Our FPAN offers a mitigation approach without sacrific-
ing generation quality by probabilistically adding appropri-
ate high-intensity noise to fine-grained token embeddings.
Because of its orthogonal operational mechanism that en-
sures non-interference with existing techniques, FPAN can
be synergistically combined with prior mitigation strategies
to further reduce their replication scores.

3. Fine-Grained Probabilistic Addition of
Noise (FPAN)

3.1. Adding noise to token embeddings
Research has shown that specific captions, corresponding
to specific text embeddigns, can cause diffusion models to
replicate training images [14, 28]. Since noise can reduce
caption specificity [13], one straightforward approach to
mitigate this issue is to inject noise into the text embed-
dings. In FPAN, we propose to inject noise at the token
embedding level to enable finer-grained control over the se-
mantic perturbation.

Let ψ = {τi}Li=1 denote a text embedding consisting
of L token embeddings, where each τi ∈ R1×d represents
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Figure 1. Results under different noise intensities. (a) R, (b) FID,
(c) SimCLIP. Three stages are shown as, overfitting stage (blue)
when W ≤ 0.7; well-fitting stage (red) when 0.7 < W ≤ 1.7;
underfitting stage (green)when W > 1.7.

the i-th token embedding in a d-dimensional space. The
following noise injection process are applied during each
training iteration,

τ ′i = τi + ξi, ξi ∼W · N (0, I), (4)

where ξi denotes a Gaussian noise, and W ∈ R+ control-
ling the noise intensity. Let ψ′ = {τ ′i}Li=1 denote the noisy
text embedding, where τ ′i ∈ R1×d represents the noisy em-
bedding of the i-th token.

3.2. Analyzing impact of token noise intensity
An important question that arises is how to determine the
appropriate intensity W of the added noise. Intuitively,
adding noise with excessively high intensity may effectively
distort the captions that are specific but can also degrade the
sematic information in the caption and result in poor quality
of generated images. Conversely, extremely low intensity
noise may fail to effectively reduce the caption specificity
and mitigate replication.

This section explores the impact of noise intensity by
conducting experiments and comparing both replication and



Figure 2. Overview of our proposed framework. (a) Probabilistic selection of noise. (b) Generation of noisy token embeddings. (c)
Diffusion model fine-tuning process including noisy token embedding.

image quality across different values of W . Our experi-
ments are based on Stable Diffusion 2.1 [22]. We fine-tune
this diffusion model on a random subset of 10,000 samples
from the LAION-2B dataset [26], incorporating noise addi-
tion to the text embeddings as described in Equation 4. We
vary W from 0 to 2.5 in steps of 0.1. To evaluate perfor-
mance, we use the replication score R [14, 15, 27, 28] to
quantify the replication, and the Fréchet Inception Distance
(FID) [16] to assess the fidelity and diversity of the gener-
ated images. Additional details on the experimental setup
are provided in Section 4.1.

Our exprimental results are presented in Figure 1, where
(a) illustrates how R varies with the intensity of the in-
jected noise by applying third-order polynomial fitting to
the experimental data points. As W increases, the repli-
cation score R monotonically decreases. This is consis-
tent with prior work [28] which argues that replication in
text-to-image diffusion models is largely due to the over-
learning of overly detailed semantic information in text em-
beddings and their associations with training images. As
W increases, the level of semantic information contained
in token embeddings is gradually degraded, making it more
difficult to learn the relationship between text conditioning
and their associated images, leading to a gradual reduction
in replication. As a result, R exhibits a decreasing trend as
W increases.

The behavior of FID is less obvious as it shows a non-
linear N-shaped increase–decrease–increase pattern as W
increases. As shown in Figure 1 (b), we hypothesize that as

W increases, the model falls into one of three-stage, over-
fitting, well-fitting and finally underfitting. As W increases
in the overfitting stage, we see FID increases reflecting a re-
duction in overfitting, as adding noise to training data acts
as a form of regularization that mitigates overfitting [7]. In
the well-fitting stage, asW increases, FID begins to decline,
a point that potentially be attributed to fully overcoming the
overfitting stage and the ability to start to generalize. As W
increases further, FID begins to rise again, which may be
attributed to the model entering a stage of underfitting the
training data.

To justify this hypothesis, we leverage a metric proposed
in [17], which we denote as SimCLIP. This metric measures
the average CLIP [19] embedding similarity between the
generated image set and training image set. Specifically,
for each generated image, we compute the average cosine
similarity between its embedding and the embeddings of all
images in the training dataset. The final SimCLIP is then ob-
tained by averaging these values across all generated images
[17]. SimCLIP serves as an indicator of overfitting, as higher
values suggest that the generated images closely resemble
those in the training set. In particular, we define a threshold
τCLIP to distinguish between well-generalized and over-
fitted models that is based on large pretrained models that
are generally trained on diverse and extensive datasets and
thus unlikely to overfit our small fine-tuning dataset [34].
In particular, we generate a reference image set with the
pretrained model and our fine-tuning prompts and set the
threshold τCLIP to the SimCLIP measured between the ref-



erence and fine-tuning image sets. Fine-tuned models with
SimCLIP above τCLIP are flagged as potentially overfitting.

In Figure 1 (c), we present the SimCLIP score for diffu-
sion models fine-tuned with different noise intensities and
compare them to τCLIP = 0.472 measured with Stable
Diffusion 2.1 [22]. In the overfitting stage, we can see the
SimCLIP score is always larger than τCLIP and gradually
decreases as W increases, supporting our hypothesis. In
the well-fitting stage, when W increases beyond 0.7, the
SimCLIP score drops below τCLIP and we assert our fine-
tuned model no longer is overfitting. In the underfitting
stage, excessive noise severely disrupts the semantic con-
tent of the captions, leading the model to generate signifi-
cantly degraded images.

3.3. Probabilistic addition of noise
In Section 3.2, we show that the maximum noise inten-
sity associated with the well-fitting stage will maximally
mitigate replication without excessively degrading gener-
ation quality. However, compared to the case with no
noise, the FID score can still be somewhat degraded. To
compensate for the FID score increase and improve the
replication-FID trade-off, we propose a fine-tuning process
with Fine-grained Probabilistic Addition of Noise (FPAN)
strategy. In particular, our method probabilistically adds
this maximal-intensity noise to each token embedding dur-
ing each fine-tuning iteration. More precisely, instead of
consistently adding high-intensity noise to all token em-
beddings, our probabilistic mechanism defines a probabil-
ity factor P , which controls the probability of whether we
inject high-intensity noise into a specific token embedding
or not. The intensity W of the injected noise is set to the
maximum noise associated with the well-fitting stage be-
cause of its associated low R and relative local minimum
FID, as shown in Figures 1 (a) and (b). An overview of the
proposed method is given in Figure 2.

More formally, let ψ = {τi}Li=1 denote a text embedding
consisting of L token embeddings, where each τi ∈ R1×d

represents the i-th token embedding in a d-dimensional
space. During each fine-tuning iteration, we independently
sample a noise term ξi ∈ R1×d for each token embedding
from the following distribution:

ξi ∼ zi · N (0,W 2I), zi ∼ Bernoulli(P ), (5)

where zi is a Bernoulli random variable that equals to 1 with
probability P . Therefore, ξi is sampled from N (0,W 2I)
with probability P , and is set to zero with probability 1−P .
The noise ξi is then injected into the corresponding token
embedding as

τ ′i = τi + ξi, (6)

where τ ′i ∈ R1×d denotes the i-th noisy token embed-
ding. All τ ′i are aggregated into a noisy text embedding

Algorithm 1 Fine-tuning with FPAN

1: Input: Pre-trained model M ; Fine-tuning dataset D;
Total timesteps T ; Number of iterations N ; Image En-
coder E(·); Text Encoder CLIP(·); Noise weights W ;
Probability P .

2: Output: Fine-tuned model M .
3: M.train()
4: iter← 0
5: while iter < N do
6: for each batch {(x, y)} ∈ D do
7: Image Encoding I ← E(x)
8: Text Encoding ψ ← CLIP(y)
9: for each token embedding τi ∈ ψ do

10: Generate noise distribution:
11: ∆ ← N (0,W 2I)
12: Sample Bernoulli variable:
13: zi ∼ Bernoulli(P )
14: Sample noise: ξi ← zi ·∆
15: Add noise: τ ′i ← τi + ξi
16: end for
17: Noisy text embedding: ψ′ ← {τ ′i}
18: Sample t ∼ Uniform(0, T )
19: Update the model: M ← update(M, I, ψ′, t)
20: iter← iter + 1
21: end for
22: end while
23: return M

ψ′ = {τ ′i}Li=1, which is used as the conditioning input
for fine-tuning the diffusion model during the current fine-
tuning iteration. More detailed pseudocode for this ap-
proach is presented in Algorithm 1.

4. Experimental Mitigation Results
In this section, we perform a systematic tuning of the hyper-
parameters for our proposed method and provide analysis.
Furthermore, to evaluate the effectiveness of our approach,
we present empirical evidence demonstrating its ability to
mitigate replication, both as a standalone strategy and in
combination with existing state-of-the-art methods.

4.1. Experimental Setup
Model Selection and Dataset We build upon Stable Dif-
fusion 2.1 [22], an advanced text-to-image diffusion model
pretrained on the complete LAION dataset [26]. We fine-
tune the model using a random subset of 10,000 samples
from the LAION-2B dataset [26]. Each sample includes an
image paired with a descriptive caption, thereby capturing
a wide variety of visual and textual content. The unmod-
ified fine-tuned model serves as our baseline. Our study
specifically targets adjustments to the noise addition strat-
egy on text token embeddings during fine-tuning, leaving



W = 1.5
P 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R↓ 0.615 0.559 0.538 0.512 0.491 0.477 0.474 0.461 0.457 0.451 0.434
FID↓ 18.24 17.37 16.43 17.45 17.77 18.15 18.91 19.87 18.22 18.83 21.26

W = 1.6
P 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R↓ 0.615 0.559 0.525 0.488 0.475 0.469 0.457 0.450 0.452 0.440 0.429
FID↓ 18.24 17.26 16.35 17.07 17.21 17.44 17.83 20.44 19.31 22.27 22.49

W = 1.7
P 0 0.1 0.2 0.3(A1) 0.4(A2) 0.5(A3) 0.6(A4) 0.7 0.8 0.9 1.0

R↓ 0.615 0.557 0.515 0.491 0.452 0.452 0.438 0.450 0.446 0.430 0.444
FID↓ 18.24 16.29 16.66 15.89 17.81 17.17 17.96 18.17 18.63 20.71 20.36

Table 1. Replication score and FID under different values of P for three configurations: W = 1.5, W = 1.6, and W = 1.7. For W = 1.7,
the values of P = 0.3, 0.4, 0.5, and 0.6 correspond to points A1, A2, A3, and A4 in Figure 3, respectively.

the model architecture intact.
Fine-tuning process During fine-tuning, all components

except the U-Net remain frozen. We adhered to the fine-
tuning configuration detailed in [27, 28], running the pro-
cess for 100,000 steps with a learning rate of 5× 10−6 and
incorporating a warm-up phase over the first 5,000 steps.
The diffusion process is executed with T = 1000 timesteps.
For evaluation, we generate 10,000 images during the infer-
ence process using 50 inference steps, with prompts identi-
cal to those used in the fine-tuning set. More implementa-
tion details are provided in Appendix 4.1.

Evaluation Metrics Our evaluation framework utilizes
three key metrics. (1) Replication score (R) [14, 15, 27, 28],
which quantifies the degree of replication; (2) Frechet In-
ception Distance (FID) [16], which assesses the fidelity
and diversity of the generated images; and (3) the R-FID
curve [15], which illustrates the trade-off between repli-
cation and generation quality created by varying a shared
hyperparameter across different methods. A second-order
polynomial function is then fitted to the (R, FID) pairs to
form a continuous trade-off curve. Curves that lie closer to
the origin reflect more favorable trade-offs.

4.2. Hyperparameters Tuning

Based on the observations from Figure 1, we consider three
noise weight intensities: W = 1.5, W = 1.6, and W =
1.7, and vary the probability P uniformly over the inter-
val [0, 1.0] with a step size of 0.1. To assess the effective-
ness of different high-intensity noise levels, we leverage R-
FID curves obtained by varying the probability parameter
P for all three values of W . Interestingly, we observed an
interesting shift: as P decreases from 1 to approximately
0.2, the FID score decreases, but then rises sharply below
this point. A detailed analysis of this behavior is provided
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Figure 3. R-FID curves corresponding to different values of
W , including four favorable points corresponding to W = 1.7.
A1(15.89, 0.491) when P = 0.3, A2(17.81, 0.452) when P =
0.4, A3(17.17, 0.452) when P = 0.5, and A4(17.96, 0.438)
when P = 0.6.

in Appendix A.2. For a clearer visual comparison of the
R-FID curves, Figure 3 presents curves fitted using results
with 0.2 < P ≤ 1.

The results show that the R-FID curve corresponding to
W = 1.7 lies closest to the origin, indicating this value
leads to the most favorable trade-off between image qual-
ity and replication mitigation. In Table 1, we present the
detailed results for all values of P under different settings
of W . It can be seen that when 0.3 ≤ P ≤ 0.6 under
W = 1.7, replication is effectively mitigated while the cor-
responding FID scores remain lower than that of the base-
line model. Specifically, the values P = 0.3, P = 0.4,
P = 0.5, and P = 0.6 correspond to points A1, A2, A3, and
A4 in Figure 3, respectively.

4.3. Standalone Performance
We employ our mitigation strategy with W = 1.7 under
probability settings P ∈ {0.3, 0.4, 0.5, 0.6}, and indepen-
dently evaluate its effectiveness against a range of exist-



Baseline
GN MC RC CWR LD DF TMAA FPAN(Ours)

[28] [28] [28] [28] [15] [14] [21] (P = 0.3 / 0.4 / 0.5 / 0.6)

R ↓ 0.615 0.596 0.420 0.565 0.614 0.378 0.412 0.309 0.491 / 0.452 / 0.452 / 0.438

FID ↓ 18.24 19.50 16.83 15.98 16.73 19.17 17.47 38.18 15.89 / 17.81 / 17.17 / 17.96

Table 2. Comparison of FPAN with prior works.

ing approaches. These include Gaussian Noise (GN) [28],
Multiple Captions (MC) [28], Random Caption Replace-
ment (RC) [28], Caption Word Repetition (CWR) [28],
Loyal Diffusion (LD) [15], Dual Fusion (DF) [14] and an
inference-time method involving token masking and atten-
tion score adjustment (TMAA) [21]. The corresponding re-
sults are summarized in Table 2.

Compared to the baseline, our method reduces the repli-
cation score R by up to 28.78%, while improving the FID
score by up to 2.35. Compared to the GN, RC, and CWR
methods, our approach achieves maximum reductions in R
by 26.51%, 22.47%, and 28.66%, respectively, without in-
curring significant degradation in the FID score. Moreover,
compared to MC, LD, DF, and TMAA, our method yields
improvements in FID by up to 0.94, 3.28, 1.58, and 22.29,
respectively, while maintaining good R scores.

The above findings suggest that our method outperforms
most other methods, when deployed as a standalone strat-
egy, offers similar if not improved trade-off between mem-
orization mitigation and generative quality over existing ap-
proaches.

4.4. Synergy with Prior Art
To further demonstrate the benefits of our method, we in-
vestigate its synergistic effects when integrated with prior
approaches that target replication mitigation from differ-
ent perspectives. Specifically, we combine our strat-
egy with four representative methods: Multiple Cap-
tions (MC) [28], Dual Fusion (DF) [14], LoyalDiffusion
(LD) [15], and Token Masking and Attention score Adjust-
ment (TMAA) [21]. The achieved best experimental results
with corresponding P in our method are shown in Table 3.
When combined with prior methods, our approach yields
up to a 16.82% reduction in R. In fact, our approach, when
combined with LD yields the lowest R = 0.357 across all
prior methods tested that have a reasonable FID of less
than 20. The only lower achieved R is for TMAA with
FPAN, where we get an R = 0.257 but at the cost of a
much higher FID = 36.93.

We may also note that the results show that in most cases,
the addition of FPAN not only yields improvements in R
but also improvements in FID. The exception is MC with
FPAN which shows a small increase in FID compared to
MC alone. This may be attributed to the fact that the MC’s

Method w/FPAN R↓ FID↓

Baseline
✗ 0.615 18.24

✓(P=0.6) 0.438 17.96

MC [28]
✗ 0.420 16.83

✓(P=0.4) 0.378 18.45

LD [15]
✗ 0.378 19.17

✓(P=0.6) 0.357 19.78

TMAA [21]
✗ 0.309 38.18

✓(P=0.6) 0.257 36.93

DF [14]
✗ 0.412 17.47

✓(P=0.6) 0.371 17.58

Table 3. The impact of combining FPAN with prior works. ✗

represents that the method is perform standalone and ✓ means
FPAN is also used with the method.

multiple captions may already have sufficient randomness
in the semantic information and adding more randomness
using FPAN may be leading to some semantic degradation.
However, the FID of MC with FPAN is still similar to base-
line’s FID, and thus it maintains high generation quality.

5. Ablation Studies

5.1. Fine-Grained vs. Coarse-Grained
To justify the effectiveness of targeting fine-grained token
embeddings, we compare FPAN against a coarser grained
probabilistic addition of noise we refer to as CPAN. In par-
ticular, while adopting the same sampling scheme for the
noise term as described in Equation 5, CPAN applies the
noise term to the entire text embedding rather than to indi-
vidual token embeddings. More specifically, in FPAN, each
token has an independent probability of being perturbed by
noise or left unchanged. However, in CPAN, if a text em-
bedding is selected to be perturbed, all token embeddings
within this text embedding are injected with noise. Other-
wise, no token embedding within the text embedding will
have injected noise.

To compare the two approaches, we adopt the same hy-
perparameter settings as described in Section 4.2. For each
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Figure 4. Comparison of R-FID curves between FPAN and CPAN
for various values of W .

possible value of W , we observe R-FID curves by vary-
ing probability P for both FPAN and CPAN. The results
are presented in Figure 4. Across all values of W , FPAN
consistently produces R-FID curves that lie closer to the
origin, indicating FPAN is more effective in mitigating R
while preserving FID.

We attribute the superior performance of our proposed
FPAN approach to its more fine-grained and flexible noise
injection strategy. Unlike CPAN, which often perturbs all
token embeddings that can severely degrades semantic con-
tent, FPAN injects noise into individual token embeddings.
This fine-grained process increases the chance of targeting
specific tokens most responsible for replication, while leav-
ing others intact. In principle, precisely controlling noise
injection for specific tokens could offer even greater ben-
efits, but doing so would require substantial computational
overhead due to the need for token-level importance estima-
tion or gradient-based analysis.
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Figure 5. Comparison of R-FID curves between FPAN and RM.

5.2. Random Masking vs. FPAN
We refer to the approach in which each token embedding
in a text embedding is masked with a probability Q dur-
ing fine-tuning as the Random Masking (RM) strategy. We
compare it with our FPAN approach because both of them
aim to despecify text conditioning for diffusion models.

We obtain R-FID curves by varying the probability P
andQ for both approaches, as shown in Figure 5. Since RM
does not exhibit the sudden shift phenomenon, its curve is
fitted using results from 0 ≤ Q ≤ 1. For a clearer visual
comparison, the curve corresponding to FPAN is fitted us-
ing the same P settings as described in Section 4.2, under
the optimal hyperparameter setting ofW = 1.7. The R-FID
curve of FPAN lies closer to the origin and, in particular,
shows FPAN outperforms RM in lower FID situations. In
addition, more detailed analysis is given in Appendix A.3

6. Conclusions and Future Work
In this work, we propose Fine-grained Probabilistic Addi-
tion of Noise (FPAN), a fine-tuning strategy designed to
mitigate replication in diffusion models while maintaining
generation quality. Our method probabilistically adds high-
intensity noise to fine-grained token embeddings during
each fine-tuning iteration. The choice of appropriate high-
intensity noise is determined by our finding on how differ-
ent amount of noise affect replication and generation qual-
ity. Through extensive experiments, FPAN demonstrates
a significant reduction in replication compared to baseline
models and prior works, without compromising the FID
score. Moreover, FPAN can be combined with recent mit-
igation methods to produce synergistic effects, further en-
hancing their performance.

While FPAN demonstrates strong performance, there
are limitations to its current design. Specifically, both the
noise intensity W and the probability parameter P are fixed
throughout the training process. However, the optimal val-
ues ofW and P may vary across different stages of training.
Future research could explore dynamically adjustingW and
P as training progresses, allowing more precise control over
noise perturbation and further improving the trade-off be-
tween generation quality and replication mitigation.
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Supplementary Material

A. Appendix

A.1. Additional Experimental Setup Details

All experiments are conducted using NVIDIA A100 Tensor
Core GPUs equipped with 40 GB of memory, supporting
both the training and inference process. During training,
we set the batch size to 16 and fix the image resolution to
256. Optimization is performed using the Adam optimizer
with β1 = 0.9 and β2 = 0.999, along with a weight decay
factor of 1e−2. For the inference process, we generate sam-
ples using S = 50 steps, uniformly spacing across the full
diffusion process.

A.2. Analysis of the Sudden Shift in FID

In this section, we provide a detailed analysis of the non-
linear trend observed in the FID score as the probability
parameter P decreases. In Figure 6, we present third-order
polynomially fitted curves based on the FID scores obtained
across different W for 0 ≤ P ≤ 1. We observe that the FID
score steadily decreases as P decreases from 1 to approxi-
mately 0.2, but begins to rise abruptly below this point. We
provide a possible explanation for this phenomenon.

According to [30], approximately 40% of the words in
a sentence contribute significantly to its overall semantics,
while the remaining 60% are function words that carry rel-
atively little semantic content. When P = 1, all token em-
beddings that corresponding to high-information words are
perturbed with strong noise, substantially disrupting the se-
mantic integrity of the text embedding. Consequently, the
quality of generated images is severely degraded, resulting
in high FID scores. As P decreases, the proportion of high-
information token embeddings subjected to strong noise
gradually decreases. This leads to a progressive restora-
tion of the global semantics encoded in the text embedding,
thereby improving the generation quality and reducing the
FID score. Furthermore, Clark et al. [5] shows that when
less than approximately 20% of the words in a sentence
are perturbed or replaced, a semantic classifier is still capa-
ble of identifying the key semantic content, indicating that
the overall semantics are preserved. Building on this in-
sight, when P decreases to approximately 0.2, the propor-
tion of token embeddings affected by strong noise reduces
to around 20%. This may explain the plateau observed in
FID reduction: at this point, the original semantic informa-
tion in the text embedding is almost fully recovered, and fur-
ther decreases in P may no longer contribute to generation
quality improvement. However, as P continues to decrease
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Figure 6. FID curve of FPAN as we vary P for three different
values of W = 1.5, 1.6, 1.7.

below 0.2, the number of function word embeddings sub-
jected to strong noise continues to decrease. Although func-
tion words individually encode limited semantic content,
perturbing them introduces stochasticity that acts similarly
to data augmentation [13], thereby enhancing the model’s
generalization ability. We attribute the sudden increase in
FID scores to the diminishing effectiveness of this regular-
ization effect, which in turn may weaken the model’s gener-
alization capacity and lead to a decline in image generation
quality.

A.3. Comparison between FPAN and RM
In Section 5.2, we empirically demonstrated that FPAN
achieves a more favorable balance between generation qual-
ity and replication compared to RM. In this section, we pro-
vide a theoretical interpretation of the differences between
the two approaches.

We compare the impact of FPAN and RM on the distri-
bution of token embeddings. We assume that each token
embedding, denoted as τ , is sampled from a distribution
with mean µτ and variance σ2

τ .
For FPAN, we denote the token embedding after adding

noise ξ as τ ′, where ξ is independent of τ and is sampled
from the distribution described in Equation 5. The resulting
τ ′ follows a distribution with mean µ′

τ and variance σ′2
τ ,

both of which can be derived as follows,

µ′
τ = E[τ + ξ] = E[τ ] + E[ξ] = µτ + 0 = µτ (7)

σ′2
τ = Var(τ + ξ) = Var(τ) + Var(ξ)

= σ2
τ + P ·W 2

(8)

From the derivation above, it is evident that our method
preserves the original mean of the token embedding distri-
bution. According to [33], the mean of token embeddings
serves as a strong representation of the overall sentence se-
mantics. Thus, our method effectively retains the semantic
content of the caption, which is crucial for maintaining the
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Figure 7. Comparison of token embedding distributions. (a) Orig-
inal token embeddings with mean −0.1674 and standard deviation
1.0306; (b) Token embeddings of FPAN with mean −0.1673 close
to that of the original embeddings but with a larger standard devia-
tion of 1.6722; (c) Token embeddings of RM with smaller magni-
tude mean of −0.0837 and smaller standard deviation of 0.7335.

high quality of generated images. In addition, our method
increases the variance of the token embedding distribution.
This increased variance allows for greater diversity in token
embeddings, thereby reducing the frequency with which the
model encounters identical token embeddings during train-
ing, which in turn reduces the model’s tendency to memo-
rize specific token information.

For RM, we denote the token embedding processed by
RM as τ ′′. The embedding τ ′′ is computed as follows,

τ ′′ = m · τ, m ∼ Bernoulli(1−Q), (9)

where m is a Bernoulli random variable that equals 0 with
probability Q. We denote the mean and variance of the dis-
tribution that τ ′′ follows as µ′′

τ and σ′′2
τ , respectively. The

values of µ′′
τ and σ′′2

τ can be derived as follows:

µ′′
τ = E[m · τ ] = E[m]E[τ ] = (1−Q)µτ (10)

σ′′2
τ = E[(τ ′′)2]− (E[τ ′′])2

= E[m2 · τ2]− (1−Q)2µ2
τ

= (1−Q)(σ2
τ + µ2

τ )− (1−Q)2µ2
τ

= (1−Q)σ2
τ +Qµ2

τ (1−Q). (11)

From the derivation results, we observe that because
1−Q < 1, that the mean of the tokens after random mask-
ing µ′′

τ is smaller in magnitude than the original µτ . Fur-
thermore, given that 1 − Q < 1 and µτ is close to zero, it
follows that (1 − Q)σ2

τ < σ2
τ , and the term Qµ2

τ (1 − Q)
approaches zero. As a result, the total variance σ′′2

τ =
(1−Q)σ2

τ +Qµ2
τ (1−Q) is less than σ′2

τ = σ2
τ + P ·W 2.

We conclude that RM alters the original semantic infor-
mation and yields a smaller increase in variance than our
method. These derivations suggest that RM is less effective
than our approach in balancing the trade-off between gener-
ation quality and replication, possibly because it alters the
mean of the token embedding distribution and fails to effec-
tively increase the variance.

To experimentally show the differences of FPAN over
RM, we analyze the impact of both methods on captions in
the fine-tuning set. Specifically, we randomly select 5000
captions from the fine-tuning set, useW = 1.7 and P = 0.6
as the hyperparameters of FPAN and Q = 0.5 for RM.
Figure 7 presents the resulting means and standard devia-
tions of the token embeddings after noise injection using
each method. It can be observed that the mean of the to-
ken embeddings processed by our method remains nearly
unchanged from the original token embeddings. In con-
trast, the magnitude of the mean of the embeddings under
RM is approximately 50% of the original value. Moreover,
the standard deviation of the token embeddings produced
by our method increases by 62.25% relative to that of the
original token embeddings, whereas the standard deviation
resulting from RM decreases by 28.82%. These results em-
pirically validate our theoretical analysis.
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